Operator growth and spread complexity in open quantum systems

Commonly, the notion of “quantum chaos” refers to the fast scrambling of information throughout complex quantum systems undergoing unitary evolution. Motivated by the Krylov complexity and the operator growth hypothesis, we demonstrate that the entropy of the population distribution for an operator...

Full description

Saved in:
Bibliographic Details
Published inEurophysics letters Vol. 147; no. 3; pp. 38002 - 38008
Main Authors Carolan, Eoin, Kiely, Anthony, Campbell, Steve, Deffner, Sebastian
Format Journal Article
LanguageEnglish
Published Les Ulis EDP Sciences, IOP Publishing and Società Italiana di Fisica 01.08.2024
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Commonly, the notion of “quantum chaos” refers to the fast scrambling of information throughout complex quantum systems undergoing unitary evolution. Motivated by the Krylov complexity and the operator growth hypothesis, we demonstrate that the entropy of the population distribution for an operator in time is a useful way to capture the complexity of the internal information dynamics of a system when subject to an environment and is, in principle, agnostic to the specific choice of operator basis. We demonstrate its effectiveness for the Sachdev-Ye-Kitaev (SYK) model, examining the dynamics of the system in both its Krylov basis and the basis of operator strings. We prove that the former basis minimises spread complexity while the latter is an eigenbasis for high dissipation. In both cases, we probe the long-time dynamics of the model and the phenomenological effects of decoherence on the complexity of the dynamics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0295-5075
1286-4854
DOI:10.1209/0295-5075/ad5b17