Optimizing Pulsar Timing Array Observational Cadences for Sensitivity to Low-frequency Gravitational-wave Sources
Observations of low-frequency gravitational waves (GWs) will require the highest possible timing precision from an array of the most spin-stable pulsars. We can improve the sensitivity of a pulsar timing array (PTA) to different GW sources by observing pulsars with low timing noise over years to dec...
Saved in:
Published in | The Astrophysical journal Vol. 868; no. 1; pp. 33 - 40 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
20.11.2018
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Observations of low-frequency gravitational waves (GWs) will require the highest possible timing precision from an array of the most spin-stable pulsars. We can improve the sensitivity of a pulsar timing array (PTA) to different GW sources by observing pulsars with low timing noise over years to decades and distributed across the sky. We discuss observing strategies for a PTA focused on a stochastic GW background such as from unresolved supermassive black hole binaries as well as focused on single continuous-wave sources. First, we describe the method to calculate a PTA's sensitivity to different GW-source classes. We then apply our method to the 45 pulsars presented in the North American Nanohertz Observatory for the GW 11 year data set. For expected amplitudes of the stochastic background, we find that all pulsars contribute significantly over the timescale of decades; the exception is for very pessimistic values of the stochastic-background amplitude. For individual single sources, we find that a number of pulsars contribute to the sensitivity of a given source, but that which pulsars contribute is different depending on the source, or versus an all-sky metric. Our results seem robust to the presence of red noise in pulsar arrival times. It is critical to obtain more robust pulsar-noise parameters as they heavily affect our results. Our results show that it is also imperative to locate and time as many high-precision pulsars as possible, as quickly as possible, to maximize the sensitivity of next-generation PTA detectors. |
---|---|
Bibliography: | AAS13153 High-Energy Phenomena and Fundamental Physics |
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/aae533 |