Optimizing Pulsar Timing Array Observational Cadences for Sensitivity to Low-frequency Gravitational-wave Sources

Observations of low-frequency gravitational waves (GWs) will require the highest possible timing precision from an array of the most spin-stable pulsars. We can improve the sensitivity of a pulsar timing array (PTA) to different GW sources by observing pulsars with low timing noise over years to dec...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 868; no. 1; pp. 33 - 40
Main Author Lam, M. T.
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 20.11.2018
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Observations of low-frequency gravitational waves (GWs) will require the highest possible timing precision from an array of the most spin-stable pulsars. We can improve the sensitivity of a pulsar timing array (PTA) to different GW sources by observing pulsars with low timing noise over years to decades and distributed across the sky. We discuss observing strategies for a PTA focused on a stochastic GW background such as from unresolved supermassive black hole binaries as well as focused on single continuous-wave sources. First, we describe the method to calculate a PTA's sensitivity to different GW-source classes. We then apply our method to the 45 pulsars presented in the North American Nanohertz Observatory for the GW 11 year data set. For expected amplitudes of the stochastic background, we find that all pulsars contribute significantly over the timescale of decades; the exception is for very pessimistic values of the stochastic-background amplitude. For individual single sources, we find that a number of pulsars contribute to the sensitivity of a given source, but that which pulsars contribute is different depending on the source, or versus an all-sky metric. Our results seem robust to the presence of red noise in pulsar arrival times. It is critical to obtain more robust pulsar-noise parameters as they heavily affect our results. Our results show that it is also imperative to locate and time as many high-precision pulsars as possible, as quickly as possible, to maximize the sensitivity of next-generation PTA detectors.
Bibliography:AAS13153
High-Energy Phenomena and Fundamental Physics
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/aae533