Multi-View Cross-Fusion Transformer Based on Kinetic Features for Non-Invasive Blood Glucose Measurement Using PPG Signal
Noninvasive blood glucose (BG) measurement could significantly improve the prevention and management of diabetes. In this paper, we present a robust novel paradigm based on analyzing photoplethysmogram (PPG) signals. The method includes signal pre-processing optimization and a multi-view cross-fusio...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 28; no. 4; pp. 1982 - 1992 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2194 2168-2208 2168-2208 |
DOI | 10.1109/JBHI.2024.3351867 |
Cover
Loading…
Summary: | Noninvasive blood glucose (BG) measurement could significantly improve the prevention and management of diabetes. In this paper, we present a robust novel paradigm based on analyzing photoplethysmogram (PPG) signals. The method includes signal pre-processing optimization and a multi-view cross-fusion transformer (MvCFT) network for non-invasive BG assessment. Specifically, a multi-size weighted fitting (MSWF) time-domain filtering algorithm is proposed to optimally preserve the most authentic morphological features of the original signals. Meanwhile, the spatial position encoding-based kinetics features are reconstructed and embedded as prior knowledge to discern the implicit physiological patterns. In addition, a cross-view feature fusion (CVFF) module is designed to incorporate pairwise mutual information among different views to adequately capture the potential complementary features in physiological sequences. Finally, the subject-wise 5-fold cross-validation is performed on a clinical dataset of 260 subjects. The root mean square error (RMSE) and mean absolute error (MAE) of BG measurements are 1.129 mmol/L and 0.659 mmol/L, respectively, and the optimal Zone A in the Clark error grid, representing none clinical risk, is 87.89%. The results indicate that the proposed method has great potential for homecare applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2168-2194 2168-2208 2168-2208 |
DOI: | 10.1109/JBHI.2024.3351867 |