Phase Conversion Accelerating “Zn‐Escape” Effect in ZnSe‐CFs Heterostructure for High Performance Sodium‐Ion Half/Full Batteries

Sodium‐ion batteries (SIBs) are considered as a promising large‐scale energy storage system owing to the abundant and low‐cost sodium resources. However, their practical application still needs to overcome some problems like slow redox kinetics and poor capacity retention rate. Here, a high‐performa...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 43; pp. e2105169 - n/a
Main Authors Dong, Wen‐Da, Li, Chao‐Fan, Wang, Chun‐Yu, Wu, Liang, Hu, Zhi‐Yi, Liu, Jing, Chen, Li‐Hua, Li, Yu, Su, Bao‐Lian
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sodium‐ion batteries (SIBs) are considered as a promising large‐scale energy storage system owing to the abundant and low‐cost sodium resources. However, their practical application still needs to overcome some problems like slow redox kinetics and poor capacity retention rate. Here, a high‐performance ZnSe/carbon fibers (ZnSe‐CFs) anode is demonstrated with high electrons/Na+ transport efficiency for sodium‐ion half/full batteries by engineering ZnSe/C heterostructure. The electrochemical behavior of the ZnSe‐CFs heterostructure anode is deeply studied via in situ characterizations and theoretical calculations. Phase conversion is revealed to accelerate the “Zn‐escape” effect for the formation of robust solid electrolyte interphase (SEI). This leads to the ZnSe‐CFs delivering a superior rate performance of 206 mAh g−1 at 1500 mA g−1 for half battery and an initial discharge capacity of 197.4 mAh g−1 at a current density of 1 A g−1 for full battery. The work here heralds a promising strategy to synthesize advanced heterostructured anodes for SIBs, and provides the guidance for a better understanding of phase conversion anodes. A ZnSe/carbon fibers (ZnSe‐CFs) anode with high electrons/Na+ transport efficiency by engineering ZnSe/C heterostructure is designed for high performance sodium‐ion half/full batteries. Phase conversion is found to accelerate the “Zn‐escape” effect for the formation of robust solid electrolyte interphase, providing the guidance for a better understanding of phase conversion anodes for high‐performance sodium‐ion batteries.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1613-6810
1613-6829
1613-6829
DOI:10.1002/smll.202105169