Hierarchical Self‐Assembly of Organic Core/Multi‐Shell Microwires for Trichromatic White‐Light Sources

White‐light‐emissive organic micro/nanostructures hold exotic potential applications in full‐color displays, on‐chip wavelength‐division multiplexing, and backlights of portable display devices, but are rarely realized in organic core/shell heterostructures. Herein, through regulating the noncovalen...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 40; pp. e2102719 - n/a
Main Authors Zhuo, Ming‐Peng, Su, Yang, Qu, Yang‐Kun, Chen, Song, He, Guang‐Peng, Yuan, Yi, Liu, Hao, Tao, Yi‐Chen, Wang, Xue‐Dong, Liao, Liang‐Sheng
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:White‐light‐emissive organic micro/nanostructures hold exotic potential applications in full‐color displays, on‐chip wavelength‐division multiplexing, and backlights of portable display devices, but are rarely realized in organic core/shell heterostructures. Herein, through regulating the noncovalent interactions between organic semiconductor molecules, a hierarchical self‐assembly approach of horizontal epitaxial‐growth is demonstrated for the fine synthesis of organic core/mono‐shell microwires with multicolor emission (red–green, red–blue, and green–blue) and especially organic core/double‐shell microwires with radial red–green–blue (RGB) emission, whose components are dibenzo[g,p]chrysene (DgpC)‐based charge‐transfer (CT) complexes. In fact, the desired lattice mismatching (≈2%) and the excellent structure compatibility of these CT complexes facilitate the epitaxial‐growth process for the facile synthesis of organic core/shell microwires. With the RGB‐emissive substructures, these core/double‐shell organic microwires are microscale white‐light sources (CIE [0.34, 0.36]). Besides, the white‐emissive core/double‐shell microwires demonstrate the fascinating full‐spectrum light transportation from 400 to 700 nm. This work indeed opens up a novel avenue for the accurate construction of organic core/shell heterostructures, which provides an attractive platform for the organic integrated optoelectronics. Through regulating the noncovalent interactions between organic semiconductor molecules (|ECT, DgpC‐TCNB = −18.35 kcal mol−1| > |ECT, DgpC‐TFP = −13.45 kcal mol−1| > |Eπ–π, DgpC = −6.81 kcal mol−1|), a hierarchical self‐assembly approach of horizontal epitaxial‐growth is demonstrated for the precise synthesis of organic core/double‐shell microwires with radial red–green–blue (RGB) substructures for miniaturized white‐light sources (CIE [0.34, 0.36]).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0935-9648
1521-4095
1521-4095
DOI:10.1002/adma.202102719