Tuning the Circular Dichroism and Circular Polarized Luminescence Intensities of Chiral 2D Hybrid Organic–Inorganic Perovskites through Halogenation of the Organic Ions

Through the incorporation of various halogen‐substituted chiral organic cations, the effects of chiral molecules on the chiroptical properties of hybrid organic–inorganic perovskites (HOIPs) are investigated. Among them, the HOIP having a Cl‐substituted chiral cation exhibits the highest circular di...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 39; pp. 21434 - 21440
Main Authors Lin, Jin‐Tai, Chen, Deng‐Gao, Yang, Lan‐Sheng, Lin, Tai‐Chun, Liu, Yi‐Hung, Chao, Yu‐Chiang, Chou, Pi‐Tai, Chiu, Ching‐Wen
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 20.09.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Through the incorporation of various halogen‐substituted chiral organic cations, the effects of chiral molecules on the chiroptical properties of hybrid organic–inorganic perovskites (HOIPs) are investigated. Among them, the HOIP having a Cl‐substituted chiral cation exhibits the highest circular dichroism (CD) and circular polarized luminescence (CPL) intensities, indicating the existence of the largest rotatory strength, whereas the F‐substituted HIOP shows the weakest intensities. The observed modulation can be correlated to the varied magnetic transition dipole of HOIPs, which is sensitive to the d‐spacing between inorganic layers and the halogen–halogen interaction between organic cations and the inorganic sheets. These counteracting effects meet the optimal CD and CPL intensity with chlorine substitution, rendering the rotatory strength of HOIPs arranged in the order of (ClMBA)2PbI4>(BrMBA)2PbI4>(IMBA)2PbI4>(MBA)2PbI4>(FMBA)2PbI4. Through the incorporation of Cl‐substituted chiral organic cations, the chiroptical properties of 2D chiral perovskites can be significantly enhanced. The observed circular dichroism and circular polarized luminescence intensities are found to be associated with the d‐spacing of hybrid organic–inorganic perovskites and the strength of the halogen–halogen interaction within the system.
AbstractList Through the incorporation of various halogen‐substituted chiral organic cations, the effects of chiral molecules on the chiroptical properties of hybrid organic–inorganic perovskites (HOIPs) are investigated. Among them, the HOIP having a Cl‐substituted chiral cation exhibits the highest circular dichroism (CD) and circular polarized luminescence (CPL) intensities, indicating the existence of the largest rotatory strength, whereas the F‐substituted HIOP shows the weakest intensities. The observed modulation can be correlated to the varied magnetic transition dipole of HOIPs, which is sensitive to the d‐spacing between inorganic layers and the halogen–halogen interaction between organic cations and the inorganic sheets. These counteracting effects meet the optimal CD and CPL intensity with chlorine substitution, rendering the rotatory strength of HOIPs arranged in the order of (ClMBA) 2 PbI 4 >(BrMBA) 2 PbI 4 >(IMBA) 2 PbI 4 >(MBA) 2 PbI 4 >(FMBA) 2 PbI 4 .
Through the incorporation of various halogen‐substituted chiral organic cations, the effects of chiral molecules on the chiroptical properties of hybrid organic–inorganic perovskites (HOIPs) are investigated. Among them, the HOIP having a Cl‐substituted chiral cation exhibits the highest circular dichroism (CD) and circular polarized luminescence (CPL) intensities, indicating the existence of the largest rotatory strength, whereas the F‐substituted HIOP shows the weakest intensities. The observed modulation can be correlated to the varied magnetic transition dipole of HOIPs, which is sensitive to the d‐spacing between inorganic layers and the halogen–halogen interaction between organic cations and the inorganic sheets. These counteracting effects meet the optimal CD and CPL intensity with chlorine substitution, rendering the rotatory strength of HOIPs arranged in the order of (ClMBA)2PbI4>(BrMBA)2PbI4>(IMBA)2PbI4>(MBA)2PbI4>(FMBA)2PbI4. Through the incorporation of Cl‐substituted chiral organic cations, the chiroptical properties of 2D chiral perovskites can be significantly enhanced. The observed circular dichroism and circular polarized luminescence intensities are found to be associated with the d‐spacing of hybrid organic–inorganic perovskites and the strength of the halogen–halogen interaction within the system.
Through the incorporation of various halogen‐substituted chiral organic cations, the effects of chiral molecules on the chiroptical properties of hybrid organic–inorganic perovskites (HOIPs) are investigated. Among them, the HOIP having a Cl‐substituted chiral cation exhibits the highest circular dichroism (CD) and circular polarized luminescence (CPL) intensities, indicating the existence of the largest rotatory strength, whereas the F‐substituted HIOP shows the weakest intensities. The observed modulation can be correlated to the varied magnetic transition dipole of HOIPs, which is sensitive to the d‐spacing between inorganic layers and the halogen–halogen interaction between organic cations and the inorganic sheets. These counteracting effects meet the optimal CD and CPL intensity with chlorine substitution, rendering the rotatory strength of HOIPs arranged in the order of (ClMBA)2PbI4>(BrMBA)2PbI4>(IMBA)2PbI4>(MBA)2PbI4>(FMBA)2PbI4.
Author Chiu, Ching‐Wen
Chou, Pi‐Tai
Yang, Lan‐Sheng
Lin, Tai‐Chun
Liu, Yi‐Hung
Lin, Jin‐Tai
Chen, Deng‐Gao
Chao, Yu‐Chiang
Author_xml – sequence: 1
  givenname: Jin‐Tai
  surname: Lin
  fullname: Lin, Jin‐Tai
  organization: National Taiwan University
– sequence: 2
  givenname: Deng‐Gao
  orcidid: 0000-0001-6406-2209
  surname: Chen
  fullname: Chen, Deng‐Gao
  organization: National Taiwan University
– sequence: 3
  givenname: Lan‐Sheng
  orcidid: 0000-0001-9211-458X
  surname: Yang
  fullname: Yang, Lan‐Sheng
  organization: National Taiwan Normal University
– sequence: 4
  givenname: Tai‐Chun
  surname: Lin
  fullname: Lin, Tai‐Chun
  organization: National Taiwan University
– sequence: 5
  givenname: Yi‐Hung
  surname: Liu
  fullname: Liu, Yi‐Hung
  organization: National Taiwan University
– sequence: 6
  givenname: Yu‐Chiang
  orcidid: 0000-0002-9831-9292
  surname: Chao
  fullname: Chao, Yu‐Chiang
  email: ycchao@ntnu.edu.tw
  organization: National Taiwan Normal University
– sequence: 7
  givenname: Pi‐Tai
  orcidid: 0000-0002-8925-7747
  surname: Chou
  fullname: Chou, Pi‐Tai
  email: chop@ntu.edu.tw
  organization: National Taiwan University
– sequence: 8
  givenname: Ching‐Wen
  orcidid: 0000-0001-7201-0943
  surname: Chiu
  fullname: Chiu, Ching‐Wen
  email: cwchiu@ntu.edu.tw
  organization: National Taiwan University
BookMark eNqFkbtOwzAUhi0EElBYmS2xsKT4EucyVuXSSBV0gDlynZPWkNrFTkBl4h14Cx6LJ8FVKyqxsNhHv77_nN8-x2jfWAMInVHSp4SwS2k09BlhlKSM53voiApGI56mfD_UMedRmgl6iI69fwp8lpHkCH09dEabGW7ngIfaqa6RDl9pNXdW-wWWptrJExtO_Q4VHncLbcArMApwYVowXrcaPLY1Hs61kw1mV3i0mjpd4Xs3C9HU98dnYeymxhNw9tU_6zZ42jCrm83xSDZ2Bka22pp1o3WkrRcX1vgTdFDLxsPp9u6hx5vrh-EoGt_fFsPBOFJckDyKmcpAyJzQaV3LjFYqzmnO4yRPsjphsVRJHLSkDt-TTXnFp4plnNVBYkrylPfQxabv0tmXDnxbLnR4atNIA7bzJRNC5EkimAjo-R_0yXbOhHSBShkjlITRPdTfUMpZ7x3U5dLphXSrkpJyvbpyvbryd3XBkG8Mb7qB1T90ObgrrnfeH9MAokc
CitedBy_id crossref_primary_10_1002_adma_202108431
crossref_primary_10_1002_adom_202203014
crossref_primary_10_1002_adom_202400514
crossref_primary_10_1007_s11426_024_1946_7
crossref_primary_10_1021_acsami_2c20716
crossref_primary_10_1002_anie_202318557
crossref_primary_10_1021_acsnano_4c02588
crossref_primary_10_1039_D3MH01390A
crossref_primary_10_1002_chem_202201299
crossref_primary_10_1002_lpor_202400040
crossref_primary_10_1002_anie_202307875
crossref_primary_10_1021_jacs_2c06342
crossref_primary_10_1007_s11467_023_1256_8
crossref_primary_10_1021_acs_chemmater_3c03234
crossref_primary_10_1016_j_scib_2022_07_011
crossref_primary_10_3390_molecules28166166
crossref_primary_10_1016_j_cclet_2023_109085
crossref_primary_10_1039_D4NR00644E
crossref_primary_10_1039_D2NR06751J
crossref_primary_10_1002_adom_202300776
crossref_primary_10_1016_j_trechm_2022_08_002
crossref_primary_10_1016_j_pquantelec_2022_100375
crossref_primary_10_1002_ejic_202200275
crossref_primary_10_1021_jacs_3c12172
crossref_primary_10_1002_adfm_202310500
crossref_primary_10_1002_ange_202217234
crossref_primary_10_1021_acs_jpclett_2c00714
crossref_primary_10_1002_adom_202301272
crossref_primary_10_1002_adom_202300580
crossref_primary_10_1002_adma_202305784
crossref_primary_10_1021_acs_nanolett_1c04669
crossref_primary_10_1002_adom_202400554
crossref_primary_10_1002_anie_202215206
crossref_primary_10_1038_s41570_022_00399_1
crossref_primary_10_1360_SSPMA_2022_0512
crossref_primary_10_1002_chem_202301244
crossref_primary_10_1002_ange_202400769
crossref_primary_10_1016_j_mser_2024_100817
crossref_primary_10_1021_acs_inorgchem_2c02900
crossref_primary_10_1002_anie_202402081
crossref_primary_10_1021_acs_chemmater_1c03815
crossref_primary_10_1021_jacsau_3c00835
crossref_primary_10_1002_ange_202114759
crossref_primary_10_1021_acsami_2c07208
crossref_primary_10_1002_smll_202403198
crossref_primary_10_1016_j_matt_2021_11_011
crossref_primary_10_1021_acs_analchem_3c02933
crossref_primary_10_1002_adom_202201888
crossref_primary_10_1039_D2MH00698G
crossref_primary_10_1002_anie_202217234
crossref_primary_10_1002_ange_202215206
crossref_primary_10_1002_anie_202306821
crossref_primary_10_1039_D1NR06407J
crossref_primary_10_1016_j_xcrp_2023_101358
crossref_primary_10_1002_adom_202200591
crossref_primary_10_1021_acsami_4c00622
crossref_primary_10_1126_sciadv_adh5083
crossref_primary_10_1021_jacs_2c12527
crossref_primary_10_1002_smll_202400338
crossref_primary_10_1021_jacs_2c10309
crossref_primary_10_1021_acsami_2c05012
crossref_primary_10_1016_j_vacuum_2023_112381
crossref_primary_10_1063_5_0200692
crossref_primary_10_1002_anie_202213294
crossref_primary_10_1021_acs_inorgchem_3c04424
crossref_primary_10_1002_ange_202318557
crossref_primary_10_1002_anie_202114759
crossref_primary_10_1007_s12274_023_5380_0
crossref_primary_10_1021_acsmaterialslett_4c00365
crossref_primary_10_1039_D3CC02098C
crossref_primary_10_1002_adom_202303039
crossref_primary_10_1007_s11426_022_1531_9
crossref_primary_10_1016_j_cclet_2022_107980
crossref_primary_10_1021_acs_jpcc_4c00150
crossref_primary_10_1002_ange_202213294
crossref_primary_10_1038_s41427_023_00485_w
crossref_primary_10_1039_D4TC01531B
crossref_primary_10_1002_ange_202402081
crossref_primary_10_1039_D2TA02207A
crossref_primary_10_1002_aenm_202200792
crossref_primary_10_1021_acs_chemmater_3c00425
crossref_primary_10_1002_ange_202306821
crossref_primary_10_1002_anie_202400769
crossref_primary_10_1039_D2NR05022F
crossref_primary_10_1002_adom_202202726
crossref_primary_10_1002_ange_202307875
crossref_primary_10_1007_s11426_023_1844_5
crossref_primary_10_1002_adfm_202316265
Cites_doi 10.1038/nnano.2014.149
10.1038/s41566-018-0220-6
10.1039/C7MH00197E
10.1021/jp304576g
10.1021/acs.jpclett.0c02135
10.1038/nphoton.2016.269
10.1021/acs.chemmater.0c02729
10.1126/sciadv.aaz4948
10.1002/anie.201915912
10.1002/anie.202013947
10.1021/cr60295a004
10.1039/B606987H
10.1002/adfm.202003476
10.1038/nphoton.2014.134
10.1038/s41467-020-20530-4
10.1021/ja00710a001
10.1038/ncomms6757
10.1002/anie.202102195
10.1021/acsnano.9b00302
10.1021/jacs.9b03148
10.1002/adma.202006722
10.1002/adma.201502567
10.1021/acs.accounts.0c00485
10.1126/science.1061655
10.1021/acsmaterialslett.9b00357
10.1016/j.jphotobiol.2015.07.011
10.1038/s41578-020-0181-5
10.1021/jacs.9b11453
10.3389/fchem.2020.00448
10.1002/anie.202016140
10.1364/OE.24.016586
10.1021/cm010105g
10.1002/ange.202102195
10.1038/s41467-017-00929-2
10.1021/jacs.0c03899
10.1002/smll.201902237
10.1021/jz401532q
10.1038/s41586-018-0576-2
10.1126/science.1243982
10.1039/b305291e
10.1126/sciadv.1700704
10.1038/s41467-018-07706-9
10.1002/ange.202016140
10.1002/adma.202006302
10.1002/slct.201500016
10.1119/1.12937
10.1002/ange.202013947
10.1039/C7TC05916G
10.1021/acsnano.0c03628
10.1039/D0CP02530E
10.1021/nl5012992
10.1038/s41570-019-0087-1
10.1002/ange.201915912
10.1021/acsaem.0c02451
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202107239
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

ProQuest Health & Medical Complete (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 21440
ExternalDocumentID 10_1002_anie_202107239
ANIE202107239
Genre article
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  funderid: MOST-109-2124-M-002-011; MOST-109-2639-M-002-001-ASP
– fundername: National Taiwan University
  funderid: NTU 108L880104
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAMNL
AAYXX
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c3509-42c8e5a901bffa81dc4919346968f624ac64dc46f1528b3d3bc2832fc462ca373
IEDL.DBID DR2
ISSN 1433-7851
IngestDate Sat Aug 17 03:47:21 EDT 2024
Thu Oct 10 20:47:18 EDT 2024
Thu Nov 21 22:31:39 EST 2024
Sat Aug 24 01:00:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3509-42c8e5a901bffa81dc4919346968f624ac64dc46f1528b3d3bc2832fc462ca373
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6406-2209
0000-0001-9211-458X
0000-0002-8925-7747
0000-0001-7201-0943
0000-0002-9831-9292
PQID 2572201019
PQPubID 946352
PageCount 7
ParticipantIDs proquest_miscellaneous_2555966525
proquest_journals_2572201019
crossref_primary_10_1002_anie_202107239
wiley_primary_10_1002_anie_202107239_ANIE202107239
PublicationCentury 2000
PublicationDate September 20, 2021
PublicationDateYYYYMMDD 2021-09-20
PublicationDate_xml – month: 09
  year: 2021
  text: September 20, 2021
  day: 20
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 562
2017; 8
2021; 4
2013; 4
2019; 3
2004; 126
2017; 3
2017; 4
1982; 50
2020; 142
2019; 1
2019; 13
2019; 15
2020 2020; 59 132
2013; 342
2006; 8
2020; 14
1975; 75
2020; 11
2020; 32
2019; 141
2020; 8
2015; 151
2018; 6
2018; 9
2020; 6
2020; 5
2014; 5
2001; 293
2015; 27
2016; 1
2021; 12
2021; 33
2020; 53
1970; 92
2020; 30
2000
2017; 11
2021 2021; 60 133
2014; 14
2020; 22
2014; 9
2018; 12
2014; 8
2012; 116
2001; 13
2016; 24
e_1_2_6_51_1
e_1_2_6_53_2
e_1_2_6_30_1
e_1_2_6_19_2
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_55_1
e_1_2_6_17_2
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_15_2
e_1_2_6_62_1
e_1_2_6_20_1
e_1_2_6_41_2
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_7_2
e_1_2_6_5_1
e_1_2_6_3_2
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_22_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_43_3
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_47_1
e_1_2_6_31_2
e_1_2_6_50_1
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_10_2
e_1_2_6_33_1
e_1_2_6_16_2
e_1_2_6_54_2
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_14_2
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_2
e_1_2_6_40_3
e_1_2_6_40_2
e_1_2_6_61_1
Berova N. (e_1_2_6_52_2) 2000
e_1_2_6_8_2
e_1_2_6_6_3
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_48_1
e_1_2_6_23_2
e_1_2_6_2_1
e_1_2_6_21_2
e_1_2_6_44_2
e_1_2_6_27_1
e_1_2_6_44_3
e_1_2_6_46_1
e_1_2_6_25_2
References_xml – volume: 11
  start-page: 108
  year: 2017
  end-page: 115
  publication-title: Nat. Photonics
– volume: 342
  start-page: 341
  year: 2013
  publication-title: Science
– volume: 13
  start-page: 3728
  year: 2001
  end-page: 3740
  publication-title: Chem. Mater.
– volume: 60 133
  start-page: 8415 8496
  year: 2021 2021
  end-page: 8418 8499
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 7866 7945
  year: 2021 2021
  end-page: 7872 7951
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 14
  start-page: 3608
  year: 2014
  end-page: 3616
  publication-title: Nano Lett.
– volume: 50
  start-page: 982
  year: 1982
  end-page: 986
  publication-title: Am. J. Phys.
– volume: 9
  start-page: 5354
  year: 2018
  publication-title: Nat. Commun.
– volume: 4
  start-page: 851
  year: 2017
  end-page: 856
  publication-title: Mater. Horiz.
– volume: 9
  start-page: 687
  year: 2014
  end-page: 692
  publication-title: Nat. Nanotechnol.
– volume: 142
  start-page: 13030
  year: 2020
  end-page: 13040
  publication-title: J. Am. Chem. Soc.
– volume: 92
  start-page: 1813
  year: 1970
  end-page: 1818
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 00448
  year: 2020
  publication-title: Front. Chem.
– volume: 8
  start-page: 506
  year: 2014
  end-page: 514
  publication-title: Nat. Photonics
– volume: 1
  start-page: 1
  year: 2016
  end-page: 8
  publication-title: ChemistrySelect
– volume: 59 132
  start-page: 6442 6504
  year: 2020 2020
  end-page: 6450 6512
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 10730 10825
  year: 2021 2021
  end-page: 10735 10830
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 13
  start-page: 3659
  year: 2019
  end-page: 3665
  publication-title: ACS Nano
– volume: 27
  start-page: 7162
  year: 2015
  end-page: 7167
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 126
  start-page: 209
  year: 2004
  end-page: 222
  publication-title: Faraday Discuss.
– volume: 5
  start-page: 5757
  year: 2014
  publication-title: Nat. Commun.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 4
  start-page: 2999
  year: 2013
  end-page: 3005
  publication-title: J. Phys. Chem. Lett.
– volume: 142
  start-page: 4206
  year: 2020
  end-page: 4212
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 528
  year: 2018
  end-page: 533
  publication-title: Nat. Photonics
– volume: 3
  start-page: 250
  year: 2019
  end-page: 260
  publication-title: Nat. Rev. Chem.
– volume: 5
  start-page: 423
  year: 2020
  end-page: 439
  publication-title: Nat. Rev. Mater.
– volume: 116
  start-page: 7372
  year: 2012
  end-page: 7385
  publication-title: J. Phys. Chem. A
– volume: 293
  start-page: 673
  year: 2001
  end-page: 676
  publication-title: Science
– volume: 8
  start-page: 686
  year: 2006
  end-page: 695
  publication-title: CrystEngComm
– volume: 151
  start-page: 83
  year: 2015
  end-page: 88
  publication-title: J. Photochem. Photobiol. B
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 12
  start-page: 284
  year: 2021
  publication-title: Nat. Commun.
– year: 2000
– volume: 75
  start-page: 323
  year: 1975
  end-page: 331
  publication-title: Chem. Rev.
– volume: 4
  start-page: 2041
  year: 2021
  end-page: 2048
  publication-title: ACS Appl. Energy Mater.
– volume: 6
  start-page: 2989
  year: 2018
  end-page: 2995
  publication-title: J. Mater. Chem. C
– volume: 53
  start-page: 2659
  year: 2020
  end-page: 2667
  publication-title: Acc. Chem. Res.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 562
  start-page: 249
  year: 2018
  end-page: 253
  publication-title: Nature
– volume: 11
  start-page: 6982
  year: 2020
  end-page: 6989
  publication-title: J. Phys. Chem. Lett.
– volume: 1
  start-page: 633
  year: 2019
  end-page: 640
  publication-title: ACS Mater. Lett.
– volume: 8
  start-page: 996
  year: 2017
  publication-title: Nat. Commun.
– volume: 141
  start-page: 10324
  year: 2019
  end-page: 10330
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: 8914
  year: 2020
  end-page: 8920
  publication-title: Chem. Mater.
– volume: 14
  start-page: 7610
  year: 2020
  end-page: 7616
  publication-title: ACS Nano
– volume: 24
  start-page: 16586
  year: 2016
  end-page: 16594
  publication-title: Opt. Express
– volume: 22
  start-page: 17299
  year: 2020
  end-page: 17305
  publication-title: Phys. Chem. Chem. Phys.
– ident: e_1_2_6_19_2
  doi: 10.1038/nnano.2014.149
– ident: e_1_2_6_32_2
  doi: 10.1038/s41566-018-0220-6
– ident: e_1_2_6_47_1
  doi: 10.1039/C7MH00197E
– ident: e_1_2_6_56_1
  doi: 10.1021/jp304576g
– ident: e_1_2_6_28_2
  doi: 10.1021/acs.jpclett.0c02135
– ident: e_1_2_6_17_2
  doi: 10.1038/nphoton.2016.269
– ident: e_1_2_6_49_1
  doi: 10.1021/acs.chemmater.0c02729
– ident: e_1_2_6_23_2
  doi: 10.1126/sciadv.aaz4948
– ident: e_1_2_6_40_2
  doi: 10.1002/anie.201915912
– ident: e_1_2_6_43_2
  doi: 10.1002/anie.202013947
– ident: e_1_2_6_53_2
  doi: 10.1021/cr60295a004
– ident: e_1_2_6_46_1
  doi: 10.1039/B606987H
– ident: e_1_2_6_10_2
  doi: 10.1002/adfm.202003476
– ident: e_1_2_6_11_2
  doi: 10.1038/nphoton.2014.134
– ident: e_1_2_6_38_1
  doi: 10.1038/s41467-020-20530-4
– ident: e_1_2_6_61_1
  doi: 10.1021/ja00710a001
– ident: e_1_2_6_8_2
  doi: 10.1038/ncomms6757
– ident: e_1_2_6_44_2
  doi: 10.1002/anie.202102195
– ident: e_1_2_6_9_1
– ident: e_1_2_6_41_2
  doi: 10.1021/acsnano.9b00302
– ident: e_1_2_6_4_2
  doi: 10.1021/jacs.9b03148
– ident: e_1_2_6_14_2
  doi: 10.1002/adma.202006722
– ident: e_1_2_6_16_2
  doi: 10.1002/adma.201502567
– ident: e_1_2_6_34_2
  doi: 10.1021/acs.accounts.0c00485
– ident: e_1_2_6_20_1
– ident: e_1_2_6_3_2
  doi: 10.1126/science.1061655
– ident: e_1_2_6_21_2
  doi: 10.1021/acsmaterialslett.9b00357
– ident: e_1_2_6_51_1
– ident: e_1_2_6_58_1
  doi: 10.1016/j.jphotobiol.2015.07.011
– ident: e_1_2_6_36_1
  doi: 10.1038/s41578-020-0181-5
– ident: e_1_2_6_48_1
  doi: 10.1021/jacs.9b11453
– ident: e_1_2_6_55_1
  doi: 10.3389/fchem.2020.00448
– ident: e_1_2_6_6_2
  doi: 10.1002/anie.202016140
– ident: e_1_2_6_60_1
  doi: 10.1364/OE.24.016586
– ident: e_1_2_6_57_1
  doi: 10.1021/cm010105g
– ident: e_1_2_6_44_3
  doi: 10.1002/ange.202102195
– ident: e_1_2_6_7_2
  doi: 10.1038/s41467-017-00929-2
– ident: e_1_2_6_42_2
  doi: 10.1021/jacs.0c03899
– ident: e_1_2_6_45_2
  doi: 10.1002/smll.201902237
– ident: e_1_2_6_39_1
– ident: e_1_2_6_25_2
  doi: 10.1021/jz401532q
– ident: e_1_2_6_18_2
  doi: 10.1038/s41586-018-0576-2
– ident: e_1_2_6_1_1
  doi: 10.1126/science.1243982
– volume-title: Circular Dichroism. Principles and Applications
  year: 2000
  ident: e_1_2_6_52_2
  contributor:
    fullname: Berova N.
– ident: e_1_2_6_33_1
– ident: e_1_2_6_54_2
  doi: 10.1039/b305291e
– ident: e_1_2_6_5_1
– ident: e_1_2_6_2_1
– ident: e_1_2_6_29_2
  doi: 10.1126/sciadv.1700704
– ident: e_1_2_6_30_1
– ident: e_1_2_6_22_2
  doi: 10.1038/s41467-018-07706-9
– ident: e_1_2_6_6_3
  doi: 10.1002/ange.202016140
– ident: e_1_2_6_27_1
– ident: e_1_2_6_24_1
– ident: e_1_2_6_13_1
– ident: e_1_2_6_15_2
  doi: 10.1002/adma.202006302
– ident: e_1_2_6_31_2
  doi: 10.1002/slct.201500016
– ident: e_1_2_6_37_1
  doi: 10.1119/1.12937
– ident: e_1_2_6_43_3
  doi: 10.1002/ange.202013947
– ident: e_1_2_6_50_1
  doi: 10.1039/C7TC05916G
– ident: e_1_2_6_59_1
  doi: 10.1021/acsnano.0c03628
– ident: e_1_2_6_62_1
  doi: 10.1039/D0CP02530E
– ident: e_1_2_6_26_2
  doi: 10.1021/nl5012992
– ident: e_1_2_6_35_2
  doi: 10.1038/s41570-019-0087-1
– ident: e_1_2_6_40_3
  doi: 10.1002/ange.201915912
– ident: e_1_2_6_12_2
  doi: 10.1021/acsaem.0c02451
SSID ssj0028806
Score 2.6637993
Snippet Through the incorporation of various halogen‐substituted chiral organic cations, the effects of chiral molecules on the chiroptical properties of hybrid...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 21434
SubjectTerms Cations
chirality
Chlorine
Circular dichroism
circular polarized luminescence
Dichroism
Dipoles
Halogenation
Luminescence
Magnetic transitions
Perovskites
rotatory strength
Substitutes
Title Tuning the Circular Dichroism and Circular Polarized Luminescence Intensities of Chiral 2D Hybrid Organic–Inorganic Perovskites through Halogenation of the Organic Ions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202107239
https://www.proquest.com/docview/2572201019
https://search.proquest.com/docview/2555966525
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqLvTSlv6oCwsyUqWespvajjc5ogW0W1GEKpC4Rf6LiCoSlGwqsSfeoW_Rx-qTdCZOstBLpfaW2HHs2B7782TmG0I-JDaJE2vjADanMBAmkkGccRuE0qDzTDTTM3Rw_nIuF1fi83V0_ciL3_NDDAo3lIx2vUYBV7qebkhD0QMbzndwZJkxjh58yJ2HqOjrwB_FYHJ69yLOA4xC37M2hmz6tPjTXWkDNR8D1nbHOX1JVN9Wb2jybdKs9MSs_6Bx_J-PeUVedHCUHvn5s0OeueI12Z73UeDekJ-XDWpOKOBEOs-r1mqVHufmpirz-paqwm6SL_CYnK-dpWfNLZrTG1w2aGclj8yttMzo_CavoEp2TBf36C5GvTuo-fXwY1n4IFOGXriq_F6jZrmmXSghukA9k_PaS3wRNqkrS5cgPG_J1enJ5XwRdPEdAsMjDG7HTOwiBYhEZ5kC4GxEAnhSIF9PJplQRgpIkxlgjFhzy7XBwEoZJDGj-Iy_I1tFWbj3hArLQhsmzsHmKkQmNQul4gk3UmqrjBuRj_34pneexiP1hM0sxb5Ph74fkXE__GknznUK6xpDs4FPkH04ZMNI4N8VVbiywWfgcCZlxKIRYe1Y_6Wm9Oh8eTLc7f5LoT3yHK_RfoWFY7K1qhq3DyBppQ9aQfgNPogMWw
link.rule.ids 315,782,786,1377,27931,27932,46301,46725
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELZaeqAXWvojFmhxpUo9BVLb8SZHtAvKwrJC1SL1FsU_EVFFgrIbJDjxDn2LPlafpDNxkoVekNpj7DhxbI_9zWTmG0I-RyYKI2NCDw4n3xM6kF6YceP5UmPwTDBUQwxwPpvJ-EKcfA86b0KMhXH8EL3BDSWj2a9RwNEgfbBiDcUQbFDwQGcZMh49Jy9A5hl69Y2_9QxSDJanCzDi3MM89B1vo88OHrd_fC6twOZDyNqcOceviOp661xNfuzXS7Wv7_4icvyvz3lNNlpESg_dEtokz2zxhqyPukRwb8mveY3GEwpQkY7yqnFcpeNcX1ZlvriiaWFWxeeoKed31tBpfYUe9Rp3Dto6yiN5Ky0zOrrMK3glG9P4FiPGqIsI1b_vf04Kl2dK03NblTcLNC4vaJtNiMZoarLOgIkPwi61bekE5OcduTg-mo9ir03x4GkeYH47pkMbpABKVJalgJ21iABSCqTsySQTqZYCymQGMCNU3HClMbdSBkVMp3zI35O1oizsFqHCMN_4kbVwvgqRScV8mfKIaymVSbUdkC_dBCfXjskjcZzNLMGxT_qxH5Ddbv6TVqIXCWxtDD0HvkL1p74aZgJ_sKSFLWu8B_QzKQMWDAhrJvuJNyWHs8lRf7X9L432yHo8P5sm08nsdIe8xHJ0Z2H-LllbVrX9AJhpqT42UvEH-rkQeA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZKK0EvUP7EllKMhMQpbbAdb3KsdrvahbJaoVbqLXL8o0aoSZXdVGpPvANvwWPxJMzESbblggTH2HHi2B77m8nMN4S8T0wSJ8bEARxOYSB0JIPYcROEUmPwTDTMhhjg_GUup2fi03l0fieK3_ND9AY3lIxmv0YBvzLucE0aihHYoN-ByjJkPHlAtoSExYqw6GtPIMVgdfr4Is4DTEPf0TaG7PB--_vH0hpr3kWszZEzeUJU11nvafLtoF5lB_r2Dx7H__maHfK4xaP0yC-gp2TDFs_Io1GXBu45-Xlao-mEAlCko7xq3FbpONcXVZkvL6kqzLp4gXpyfmsNPakv0Z9e475BWzd5pG6lpaOji7yCV7Ixnd5gvBj18aD61_cfs8JnmdJ0Yavyeomm5SVtcwnRKRqarDdf4oOwS21bOgPpeUHOJseno2nQJngINI8wux3TsY0UQJLMOQXIWYsEAKVAwh4nmVBaCiiTDkBGnHHDM42ZlRwUMa34kL8km0VZ2FeECsNCEybWwukqhJMZC6XiCddSZkZpOyAfuvlNrzyPR-oZm1mKY5_2Yz8ge930p608L1PY2Bj6DXyE6nd9NcwE_l5RhS1rvAe0MykjFg0Ia-b6L29Kj-az4_5q918avSUPF-NJejKbf35NtrEYfVlYuEc2V1Vt3wBgWmX7jUz8BqQeDx4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+the+Circular+Dichroism+and+Circular+Polarized+Luminescence+Intensities+of+Chiral+2D+Hybrid+Organic%E2%80%93Inorganic+Perovskites+through+Halogenation+of+the+Organic+Ions&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Lin%2C+Jin%E2%80%90Tai&rft.au=Chen%2C+Deng%E2%80%90Gao&rft.au=Yang%2C+Lan%E2%80%90Sheng&rft.au=Lin%2C+Tai%E2%80%90Chun&rft.date=2021-09-20&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=39&rft.spage=21434&rft.epage=21440&rft_id=info:doi/10.1002%2Fanie.202107239&rft.externalDBID=10.1002%252Fanie.202107239&rft.externalDocID=ANIE202107239
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon