Tuning the Circular Dichroism and Circular Polarized Luminescence Intensities of Chiral 2D Hybrid Organic–Inorganic Perovskites through Halogenation of the Organic Ions
Through the incorporation of various halogen‐substituted chiral organic cations, the effects of chiral molecules on the chiroptical properties of hybrid organic–inorganic perovskites (HOIPs) are investigated. Among them, the HOIP having a Cl‐substituted chiral cation exhibits the highest circular di...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 39; pp. 21434 - 21440 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
20.09.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Through the incorporation of various halogen‐substituted chiral organic cations, the effects of chiral molecules on the chiroptical properties of hybrid organic–inorganic perovskites (HOIPs) are investigated. Among them, the HOIP having a Cl‐substituted chiral cation exhibits the highest circular dichroism (CD) and circular polarized luminescence (CPL) intensities, indicating the existence of the largest rotatory strength, whereas the F‐substituted HIOP shows the weakest intensities. The observed modulation can be correlated to the varied magnetic transition dipole of HOIPs, which is sensitive to the d‐spacing between inorganic layers and the halogen–halogen interaction between organic cations and the inorganic sheets. These counteracting effects meet the optimal CD and CPL intensity with chlorine substitution, rendering the rotatory strength of HOIPs arranged in the order of (ClMBA)2PbI4>(BrMBA)2PbI4>(IMBA)2PbI4>(MBA)2PbI4>(FMBA)2PbI4.
Through the incorporation of Cl‐substituted chiral organic cations, the chiroptical properties of 2D chiral perovskites can be significantly enhanced. The observed circular dichroism and circular polarized luminescence intensities are found to be associated with the d‐spacing of hybrid organic–inorganic perovskites and the strength of the halogen–halogen interaction within the system. |
---|---|
Bibliography: | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202107239 |