Operando Quantified Lithium Plating Determination Enabled by Dynamic Capacitance Measurement in Working Li‐Ion Batteries

The access to full performance of state‐of‐the‐art Li‐ion batteries (LIBs) is hindered by the mysterious lithium plating behavior. A rapid quantified lithium plating determination method compatible with actual working conditions is an urgent necessity for safe working LIBs. In this contribution, the...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 39; pp. e202210365 - n/a
Main Authors Xu, Lei, Xiao, Ye, Yang, Yi, Yang, Shi‐Jie, Chen, Xiao‐Ru, Xu, Rui, Yao, Yu‐Xing, Cai, Wen‐Long, Yan, Chong, Huang, Jia‐Qi, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 26.09.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.202210365

Cover

Loading…
Abstract The access to full performance of state‐of‐the‐art Li‐ion batteries (LIBs) is hindered by the mysterious lithium plating behavior. A rapid quantified lithium plating determination method compatible with actual working conditions is an urgent necessity for safe working LIBs. In this contribution, the relationship between electrical double layer (EDL) capacitance and electrochemical active surface area (ECSA) of graphite anodes during the Li‐ion intercalation and Li plating processes is unveiled. We propose an operando lithium plating determination method based on the dynamic capacitance measurement (DCM) test. Reasonable selection of alternating current (AC) frequency protects the anodic responses from the interference of cathodic responses, which allows DCM to be applied in practical LIBs. The onset of lithium plating can be quantitatively traced, demonstrating the promise for real‐time operando determination for lithium plating in a working battery. An operando quantified detection method enabled by dynamic capacitance measurement (DCM) is proposed for working batteries without extra equipment and sensors. An upward trend of capacitance can be observed once the Li plating occurs, which determines the onset of Li plating.
AbstractList The access to full performance of state‐of‐the‐art Li‐ion batteries (LIBs) is hindered by the mysterious lithium plating behavior. A rapid quantified lithium plating determination method compatible with actual working conditions is an urgent necessity for safe working LIBs. In this contribution, the relationship between electrical double layer (EDL) capacitance and electrochemical active surface area (ECSA) of graphite anodes during the Li‐ion intercalation and Li plating processes is unveiled. We propose an operando lithium plating determination method based on the dynamic capacitance measurement (DCM) test. Reasonable selection of alternating current (AC) frequency protects the anodic responses from the interference of cathodic responses, which allows DCM to be applied in practical LIBs. The onset of lithium plating can be quantitatively traced, demonstrating the promise for real‐time operando determination for lithium plating in a working battery.
The access to full performance of state-of-the-art Li-ion batteries (LIBs) is hindered by the mysterious lithium plating behavior. A rapid quantified lithium plating determination method compatible with actual working conditions is an urgent necessity for safe working LIBs. In this contribution, the relationship between electrical double layer (EDL) capacitance and electrochemical active surface area (ECSA) of graphite anodes during the Li-ion intercalation and Li plating processes is unveiled. We propose an operando lithium plating determination method based on the dynamic capacitance measurement (DCM) test. Reasonable selection of alternating current (AC) frequency protects the anodic responses from the interference of cathodic responses, which allows DCM to be applied in practical LIBs. The onset of lithium plating can be quantitatively traced, demonstrating the promise for real-time operando determination for lithium plating in a working battery.The access to full performance of state-of-the-art Li-ion batteries (LIBs) is hindered by the mysterious lithium plating behavior. A rapid quantified lithium plating determination method compatible with actual working conditions is an urgent necessity for safe working LIBs. In this contribution, the relationship between electrical double layer (EDL) capacitance and electrochemical active surface area (ECSA) of graphite anodes during the Li-ion intercalation and Li plating processes is unveiled. We propose an operando lithium plating determination method based on the dynamic capacitance measurement (DCM) test. Reasonable selection of alternating current (AC) frequency protects the anodic responses from the interference of cathodic responses, which allows DCM to be applied in practical LIBs. The onset of lithium plating can be quantitatively traced, demonstrating the promise for real-time operando determination for lithium plating in a working battery.
The access to full performance of state‐of‐the‐art Li‐ion batteries (LIBs) is hindered by the mysterious lithium plating behavior. A rapid quantified lithium plating determination method compatible with actual working conditions is an urgent necessity for safe working LIBs. In this contribution, the relationship between electrical double layer (EDL) capacitance and electrochemical active surface area (ECSA) of graphite anodes during the Li‐ion intercalation and Li plating processes is unveiled. We propose an operando lithium plating determination method based on the dynamic capacitance measurement (DCM) test. Reasonable selection of alternating current (AC) frequency protects the anodic responses from the interference of cathodic responses, which allows DCM to be applied in practical LIBs. The onset of lithium plating can be quantitatively traced, demonstrating the promise for real‐time operando determination for lithium plating in a working battery. An operando quantified detection method enabled by dynamic capacitance measurement (DCM) is proposed for working batteries without extra equipment and sensors. An upward trend of capacitance can be observed once the Li plating occurs, which determines the onset of Li plating.
Author Cai, Wen‐Long
Huang, Jia‐Qi
Xu, Rui
Xiao, Ye
Yao, Yu‐Xing
Yang, Shi‐Jie
Zhang, Qiang
Xu, Lei
Chen, Xiao‐Ru
Yang, Yi
Yan, Chong
Author_xml – sequence: 1
  givenname: Lei
  surname: Xu
  fullname: Xu, Lei
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Ye
  surname: Xiao
  fullname: Xiao, Ye
  organization: Beijing Institute of Technology
– sequence: 3
  givenname: Yi
  surname: Yang
  fullname: Yang, Yi
  organization: Beijing Institute of Technology
– sequence: 4
  givenname: Shi‐Jie
  surname: Yang
  fullname: Yang, Shi‐Jie
  organization: Beijing Institute of Technology
– sequence: 5
  givenname: Xiao‐Ru
  surname: Chen
  fullname: Chen, Xiao‐Ru
  organization: Tsinghua University
– sequence: 6
  givenname: Rui
  surname: Xu
  fullname: Xu, Rui
  organization: Beijing Institute of Technology
– sequence: 7
  givenname: Yu‐Xing
  surname: Yao
  fullname: Yao, Yu‐Xing
  organization: Tsinghua University
– sequence: 8
  givenname: Wen‐Long
  surname: Cai
  fullname: Cai, Wen‐Long
  organization: Tsinghua University
– sequence: 9
  givenname: Chong
  surname: Yan
  fullname: Yan, Chong
  organization: Tsinghua University
– sequence: 10
  givenname: Jia‐Qi
  surname: Huang
  fullname: Huang, Jia‐Qi
  email: jqhuang@bit.edu.cn
  organization: Beijing Institute of Technology
– sequence: 11
  givenname: Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhang-qiang@mails.tsinghua.edu.cn
  organization: Tsinghua University
BookMark eNqFkctu1DAUhq2qSL3AlrUlNmwy-BLnsmynUxhpoK0EYmmdOCetS-IMtiM0rHiEPmOfBEeDQKpUsbItfd9v-_wn5NCNDgl5zdmCMybegbO4EEwIzmShDsgxV4JnsizlYdrnUmZlpfgROQnhPvFVxYpj8vNqix5cO9KbCVy0ncWWbmy8s9NAr3uI1t3SC4zoB-vSaXR05aDpE9Xs6MXOwWANXcIWjI3gDNKPCGHyOKCL1Dr6dfTf5oyNffz1sE76OcSUZjG8JC866AO--rOeki-Xq8_LD9nm6v16ebbJjFRMZai6grOal7lisgJWpR-xRlWcmbZpO8bRyLKRHTQSmq6pS1kYk5e8yDl0rGXylLzd5279-H3CEPVgg8G-B4fjFLQo6rpOeYVM6Jsn6P04eZdep0XJVS6EYiJRiz1l_BiCx05vvR3A7zRneq5Cz1Xov1UkIX8izMOahxk92P55rd5rP2yPu_9cos8-rVf_3N_CTaG-
CitedBy_id crossref_primary_10_26599_CF_2024_9200017
crossref_primary_10_1002_batt_202300132
crossref_primary_10_1016_j_joule_2023_05_005
crossref_primary_10_1002_aenm_202400894
crossref_primary_10_1016_j_est_2024_114715
crossref_primary_10_1002_smll_202405853
crossref_primary_10_1002_ange_202406054
crossref_primary_10_1002_anie_202312310
crossref_primary_10_1039_D3TA04733D
crossref_primary_10_1002_ange_202303888
crossref_primary_10_1002_inf2_12612
crossref_primary_10_1002_anie_202409409
crossref_primary_10_1149_1945_7111_ad1e3d
crossref_primary_10_1002_aenm_202401977
crossref_primary_10_1021_acs_jpcc_3c00033
crossref_primary_10_1039_D4EB00011K
crossref_primary_10_1002_cta_4138
crossref_primary_10_1063_5_0178707
crossref_primary_10_1002_smll_202301572
crossref_primary_10_1021_acsnano_4c13911
crossref_primary_10_1039_D4EE03468F
crossref_primary_10_1021_acs_nanolett_2c03535
crossref_primary_10_1039_D4SE00291A
crossref_primary_10_1002_advs_202406934
crossref_primary_10_1002_anie_202302285
crossref_primary_10_1002_adma_202301881
crossref_primary_10_1002_aenm_202303726
crossref_primary_10_1039_D4TA05871B
crossref_primary_10_1016_j_matt_2023_04_012
crossref_primary_10_1021_acs_nanolett_3c00729
crossref_primary_10_1149_1945_7111_ad92e1
crossref_primary_10_1002_ange_202312310
crossref_primary_10_1002_anie_202406054
crossref_primary_10_1007_s11426_024_2314_9
crossref_primary_10_1016_j_geits_2024_100167
crossref_primary_10_1021_acsnano_3c12329
crossref_primary_10_54227_elab_20220011
crossref_primary_10_1002_ange_202409409
crossref_primary_10_3390_en17235930
crossref_primary_10_1002_cssc_202400971
crossref_primary_10_1002_anie_202303888
crossref_primary_10_1002_ange_202302285
crossref_primary_10_1002_smll_202306576
Cites_doi 10.1021/acsami.0c07803
10.1016/j.joule.2019.11.004
10.1021/jp9701911
10.1021/acsenergylett.0c00859
10.1016/j.joule.2020.12.020
10.1002/anie.202106178
10.3390/en12244652
10.1038/s41467-021-26894-5
10.1016/j.jpowsour.2020.227798
10.1016/j.jpowsour.2021.230508
10.1016/j.ensm.2021.06.013
10.1149/2.0621506jes
10.1016/j.mattod.2017.11.001
10.1016/j.elecom.2012.06.010
10.1016/j.jpowsour.2013.12.060
10.1002/batt.202000088
10.1002/anie.202102593
10.1021/acsenergylett.0c00831
10.1021/acs.chemrev.8b00422
10.1073/pnas.1708224114
10.1016/j.jechem.2021.10.016
10.1002/cjoc.202000512
10.1002/ange.202106178
10.1016/j.jpowsour.2021.229794
10.1002/9781119381860.ch1
10.1021/acsami.9b16589
10.1038/s41560-019-0405-3
10.1039/D1EE01216A
10.1021/jacs.0c06727
10.1016/j.jpowsour.2017.04.072
10.1007/BF02376083
10.1016/j.joule.2017.10.007
10.1002/ange.202102593
10.1016/j.apenergy.2021.117386
10.1149/1945-7111/abd3b8
10.1016/j.jpowsour.2013.03.186
10.1002/aenm.202100372
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202210365
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
CrossRef
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 10_1002_anie_202210365
ANIE202210365
Genre article
GrantInformation_xml – fundername: Beijing Natural Science Foundation
  funderid: Z200011 and JQ20004
– fundername: National Key Research and Development Program
  funderid: 2021YFB2500300 and 2021YFB2400300
– fundername: National Natural Science Foundation of China
  funderid: 21825501
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c3505-e5f61091745038a083770b5810cdbdf01ec37b3fab3abfb9736cc471641af0d03
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 06:29:10 EDT 2025
Sun Jul 13 04:19:44 EDT 2025
Tue Jul 01 01:18:27 EDT 2025
Thu Apr 24 22:53:08 EDT 2025
Wed Jan 22 16:24:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3505-e5f61091745038a083770b5810cdbdf01ec37b3fab3abfb9736cc471641af0d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3929-1541
PQID 2715422502
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2699958163
proquest_journals_2715422502
crossref_primary_10_1002_anie_202210365
crossref_citationtrail_10_1002_anie_202210365
wiley_primary_10_1002_anie_202210365_ANIE202210365
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 26, 2022
PublicationDateYYYYMMDD 2022-09-26
PublicationDate_xml – month: 09
  year: 2022
  text: September 26, 2022
  day: 26
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 162
2019; 4
2021; 5
2019; 3
2021; 300
2020; 142
2019; 11
2019; 12
2002; 8
2022; 67
2013; 240
2020; 12
2020; 167
2014; 254
2018; 21
2017; 356
2017; 114
2021; 14
2020; 5
2020; 3
2018; 2
2021; 12
2021; 11
2020; 451
2018; 118
2021; 39
2021; 512
1997; 101
2021 2021; 60 133
2018
2021; 495
2021; 41
2012; 22
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_7_1
e_1_2_7_18_2
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_14_3
e_1_2_7_15_2
e_1_2_7_16_1
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_42_1
e_1_2_7_12_2
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_2
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_9_3
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_33_2
e_1_2_7_21_1
e_1_2_7_34_2
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_2
References_xml – volume: 356
  start-page: 36
  year: 2017
  end-page: 46
  publication-title: J. Power Sources
– volume: 512
  year: 2021
  publication-title: J. Power Sources
– volume: 118
  start-page: 11433
  year: 2018
  end-page: 11456
  publication-title: Chem. Rev.
– volume: 60 133
  start-page: 13007 13117
  year: 2021 2021
  end-page: 13012 13122
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 41
  start-page: 209
  year: 2021
  end-page: 221
  publication-title: Energy Storage Mater.
– volume: 67
  start-page: 255
  year: 2022
  end-page: 262
  publication-title: J. Energy Chem.
– volume: 5
  start-page: 1750
  year: 2020
  end-page: 1757
  publication-title: ACS Energy Lett.
– volume: 162
  start-page: A959
  year: 2015
  end-page: A964
  publication-title: J. Electrochem. Soc.
– volume: 240
  start-page: 273
  year: 2013
  end-page: 280
  publication-title: J. Power Sources
– volume: 451
  year: 2020
  publication-title: J. Power Sources
– volume: 14
  start-page: 4979
  year: 2021
  end-page: 4988
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 4652
  year: 2019
  publication-title: Energies
– volume: 8
  start-page: 300
  year: 2002
  end-page: 313
  publication-title: Ionics
– volume: 5
  start-page: 393
  year: 2021
  end-page: 414
  publication-title: Joule
– volume: 300
  year: 2021
  publication-title: Appl. Energy
– volume: 254
  start-page: 80
  year: 2014
  end-page: 87
  publication-title: J. Power Sources
– volume: 4
  start-page: 540
  year: 2019
  end-page: 550
  publication-title: Nat. Energy
– volume: 60 133
  start-page: 21860 22031
  year: 2021 2021
  end-page: 21867 22038
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 2018
– volume: 3
  start-page: 1028
  year: 2020
  end-page: 1039
  publication-title: Batteries Supercaps
– volume: 22
  start-page: 120
  year: 2012
  end-page: 123
  publication-title: Electrochem. Commun.
– volume: 3
  start-page: 2583
  year: 2019
  end-page: 2584
  publication-title: Joule
– volume: 12
  start-page: 30438
  year: 2020
  end-page: 30448
  publication-title: ACS Appl. Mater. Interfaces
– volume: 167
  year: 2020
  publication-title: J. Electrochem. Soc.
– volume: 21
  start-page: 231
  year: 2018
  end-page: 240
  publication-title: Mater. Today
– volume: 2
  start-page: 110
  year: 2018
  end-page: 124
  publication-title: Joule
– volume: 114
  start-page: 12138
  year: 2017
  end-page: 12143
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 101
  start-page: 4641
  year: 1997
  end-page: 4647
  publication-title: J. Phys. Chem. B
– volume: 12
  start-page: 6513
  year: 2021
  publication-title: Nat. Commun.
– volume: 11
  start-page: 46839
  year: 2019
  end-page: 46850
  publication-title: ACS Appl. Mater. Interfaces
– volume: 495
  year: 2021
  publication-title: J. Power Sources
– volume: 5
  start-page: 2045
  year: 2020
  end-page: 2051
  publication-title: ACS Energy Lett.
– volume: 39
  start-page: 165
  year: 2021
  end-page: 173
  publication-title: Chin. J. Chem.
– volume: 142
  start-page: 17447
  year: 2020
  end-page: 17456
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_7_11_2
  doi: 10.1021/acsami.0c07803
– ident: e_1_2_7_3_2
  doi: 10.1016/j.joule.2019.11.004
– ident: e_1_2_7_35_1
  doi: 10.1021/jp9701911
– ident: e_1_2_7_41_1
  doi: 10.1021/acsenergylett.0c00859
– ident: e_1_2_7_12_2
  doi: 10.1016/j.joule.2020.12.020
– ident: e_1_2_7_14_2
  doi: 10.1002/anie.202106178
– ident: e_1_2_7_43_1
  doi: 10.3390/en12244652
– ident: e_1_2_7_30_1
  doi: 10.1038/s41467-021-26894-5
– ident: e_1_2_7_29_1
  doi: 10.1016/j.jpowsour.2020.227798
– ident: e_1_2_7_28_1
  doi: 10.1016/j.jpowsour.2021.230508
– ident: e_1_2_7_5_2
  doi: 10.1016/j.ensm.2021.06.013
– ident: e_1_2_7_27_1
  doi: 10.1149/2.0621506jes
– ident: e_1_2_7_20_1
  doi: 10.1016/j.mattod.2017.11.001
– ident: e_1_2_7_33_2
  doi: 10.1016/j.elecom.2012.06.010
– ident: e_1_2_7_23_1
  doi: 10.1016/j.jpowsour.2013.12.060
– ident: e_1_2_7_37_1
  doi: 10.1002/batt.202000088
– ident: e_1_2_7_9_2
  doi: 10.1002/anie.202102593
– ident: e_1_2_7_1_1
– ident: e_1_2_7_4_1
– ident: e_1_2_7_24_1
  doi: 10.1021/acsenergylett.0c00831
– ident: e_1_2_7_7_1
– ident: e_1_2_7_2_2
  doi: 10.1021/acs.chemrev.8b00422
– ident: e_1_2_7_40_2
  doi: 10.1073/pnas.1708224114
– ident: e_1_2_7_6_2
  doi: 10.1016/j.jechem.2021.10.016
– ident: e_1_2_7_10_1
– ident: e_1_2_7_15_2
  doi: 10.1002/cjoc.202000512
– ident: e_1_2_7_16_1
– ident: e_1_2_7_14_3
  doi: 10.1002/ange.202106178
– ident: e_1_2_7_25_1
  doi: 10.1016/j.jpowsour.2021.229794
– ident: e_1_2_7_31_1
  doi: 10.1002/9781119381860.ch1
– ident: e_1_2_7_13_1
– ident: e_1_2_7_38_1
– ident: e_1_2_7_42_1
  doi: 10.1021/acsami.9b16589
– ident: e_1_2_7_32_1
– ident: e_1_2_7_8_2
  doi: 10.1038/s41560-019-0405-3
– ident: e_1_2_7_21_1
  doi: 10.1039/D1EE01216A
– ident: e_1_2_7_19_1
  doi: 10.1021/jacs.0c06727
– ident: e_1_2_7_26_1
  doi: 10.1016/j.jpowsour.2017.04.072
– ident: e_1_2_7_36_1
  doi: 10.1007/BF02376083
– ident: e_1_2_7_39_2
  doi: 10.1016/j.joule.2017.10.007
– ident: e_1_2_7_9_3
  doi: 10.1002/ange.202102593
– ident: e_1_2_7_22_1
  doi: 10.1016/j.apenergy.2021.117386
– ident: e_1_2_7_18_2
  doi: 10.1149/1945-7111/abd3b8
– ident: e_1_2_7_34_2
  doi: 10.1016/j.jpowsour.2013.03.186
– ident: e_1_2_7_17_2
  doi: 10.1002/aenm.202100372
SSID ssj0028806
Score 2.6238966
Snippet The access to full performance of state‐of‐the‐art Li‐ion batteries (LIBs) is hindered by the mysterious lithium plating behavior. A rapid quantified lithium...
The access to full performance of state-of-the-art Li-ion batteries (LIBs) is hindered by the mysterious lithium plating behavior. A rapid quantified lithium...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e202210365
SubjectTerms Alternating current
Anodic protection
Capacitance
Cathodic protection
Electric Double Layer Capacitance
Electrochemistry
Fast Determination
Lithium
Lithium Plating
Lithium-ion batteries
Operando Characterization
Plating
Pouch Lithium-Ion Batteries
Working conditions
Title Operando Quantified Lithium Plating Determination Enabled by Dynamic Capacitance Measurement in Working Li‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202210365
https://www.proquest.com/docview/2715422502
https://www.proquest.com/docview/2699958163
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iRS--xfVFBMFTNJu0qT3KuqLiGwVvJUlTXdTuou1BT_4Ef6O_xJm-VgUR9NbSpE0ySeabdOYbQtaFBzrK9wPmx9wyr605C2ELZGAPJaA9_TAUGDt8fKL2r7zDa__6UxR_yQ_RHLjhyij2a1zg2jxtDUlDMQIb7DsBNotUGGWODluIii4a_igBk7MML5KSYRb6mrWRi62v1b9qpSHU_AxYC42zN0l03dbS0eRuM8_Mpn35RuP4n85MkYkKjtKdcv5MkxGXzpCxTp0Fbpa8nA4cqLO4T89zXTgWuZge9bLbXv5Az9CRLr2hu7VPDUqZdotwrJiaZ7pb5runHVDJtpfhDKPHw1NJ2ktpdVoP73x_fTuA6iXjJxjwc-Rqr3vZ2WdVvgZmJQAp5vwEydvBxkGOGQ3gLgi48bfb3MYmTnjbWRkYmWgjtUlMGEhlrYcGW1snPOZynoym_dQtEOok18pZ53ELu0qsTYjIUiitlAULTrYIq-UV2YrMHHNq3EclDbOIcESjZkRbZKMpPyhpPH4suVyLP6qW81MkAkCasPNx0SJrzWOQBP5d0anr51BGAdaGziponChk_cuXop2Tg25zt_iXSktkHK_Rf0WoZTKaPeZuBUBSZlaLhfABu38IvA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOZQLhQJiaQtGQuLk1msnDjlWu1vtwu4WUCtxi2zHKauWbAXJoT31EfqMfZLO5G8pEkKCYxI7sT225xtn5huAtzJAHRWGEQ9T4XjQN4LHuAVytIcy1J5hHEuKHZ7N9fg4-PA1bL0JKRam5ofoDtxoZVT7NS1wOpDeW7GGUgg2GngSjRalw_vwgNJ6UxKD4ZeOQUri9KwDjJTilIe-5W0Ucu9u_bt6aQU2f4Wslc452ADbtrZ2NTndLQu76y5_I3L8r-48hkcNImX79RR6Avd8vgnrgzYR3FO4PDz3qNHSJftcmsq3yKdsuii-Lcrv7BP50uUnbNi61ZCg2aiKyEqZvWDDOuU9G6BWdouCJhmbrQ4m2SJnzYE9vvPm6nqC1WvST7Thn8HxwehoMOZNygbuFGIp7sOM-NvRzCGaGYP4LoqEDd_3hUttmom-dyqyKjNWGZvZOFLauYBstr7JRCrUc1jLl7l_AcwrYbR3PhAON5bU2JjApdRGa4dGnOoBbwWWuIbPnNJqnCU1E7NMaESTbkR78K4rf14zefyx5HYr_6RZ0T8TGSHYxM1PyB686R6jJOgHi8n9ssQyGuE2dlZj42Ql7L98KdmfT0bd1ct_qfQa1sdHs2kyncw_bsFDuk_uLFJvw1rxo_Q7iJkK-6paFbdAJgzW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL74otBYyExMmt106c5ljtQ11ol4Ko1FvkV2AFZFc0OdBTfwK_kV_CTF7bIiEkOCaxEyfj8XzjzHwD8FJGaKPiOOGxF45HQyN4iksgR38oR-sZp6mk3OGjuT44iV6fxqeXsvgbfoh-w400o16vScFXPt9dk4ZSBjb6dxJ9FqXj63Aj0qgxBIve9wRSEmdnk1-kFKcy9B1to5C7V_tfNUtrrHkZsdYmZ3oXTDfYJtLk805V2h13_huP4_-8zT240-JRtt9MoPtwLRQP4NaoKwP3EM7frgLaM79k7ypTRxYFzw4X5adF9ZUdUyRd8ZGNu6AaEjOb1PlYntnvbNwUvGcjtMluUdIUY0frbUm2KFi7XY_3_HnxY4bdG8pP9OAfwcl08mF0wNuCDdwpRFI8xDmxt6OTQyQzBtFdkggb7w2F89bnYhicSqzKjVXG5jZNlHYuIo9taHLhhdqEjWJZhMfAghJGBxci4XBZ8camBC2lNlo7dOHUAHgnr8y1bOZUVONL1vAwy4y-aNZ_0QG86tuvGh6PP7bc7sSftfp8lskEoSYufUIO4EV_GSVBv1dMEZYVttEItvFlNQ5O1rL-y5Oy_fls0h9t_Uun53DzeDzNDmfzN0_gNp2mWBapt2Gj_FaFpwiYSvus1olfJskLjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Operando+Quantified+Lithium+Plating+Determination+Enabled+by+Dynamic+Capacitance+Measurement+in+Working+Li-Ion+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xu%2C+Lei&rft.au=Xiao%2C+Ye&rft.au=Yang%2C+Yi&rft.au=Yang%2C+Shi-Jie&rft.date=2022-09-26&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=61&rft.issue=39&rft.spage=e202210365&rft_id=info:doi/10.1002%2Fanie.202210365&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon