Solar cell efficiency tables (Version 60)

Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since January 2022 are reviewed. An appendix describing temporary electr...

Full description

Saved in:
Bibliographic Details
Published inProgress in photovoltaics Vol. 30; no. 7; pp. 687 - 701
Main Authors Green, Martin A., Dunlop, Ewan D., Hohl‐Ebinger, Jochen, Yoshita, Masahiro, Kopidakis, Nikos, Bothe, Karsten, Hinken, David, Rauer, Michael, Hao, Xiaojing
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.07.2022
Wiley Blackwell (John Wiley & Sons)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since January 2022 are reviewed. An appendix describing temporary electrical contacting of large‐area solar cells approaches and terminology is also included. Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since January 2022 are reviewed. An appendix describing temporary electrical contacting of large‐area solar cells approaches and terminology is also included.
AbstractList Abstract Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since January 2022 are reviewed. An appendix describing temporary electrical contacting of large‐area solar cells approaches and terminology is also included. Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since January 2022 are reviewed. An appendix describing temporary electrical contacting of large‐area solar cells approaches and terminology is also included.
Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since January 2022 are reviewed. An appendix describing temporary electrical contacting of large‐area solar cells approaches and terminology is also included. Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since January 2022 are reviewed. An appendix describing temporary electrical contacting of large‐area solar cells approaches and terminology is also included.
Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since January 2022 are reviewed. An appendix describing temporary electrical contacting of large‐area solar cells approaches and terminology is also included.
Abstract Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since January 2022 are reviewed. An appendix describing temporary electrical contacting of large‐area solar cells approaches and terminology is also included.
Author Hinken, David
Kopidakis, Nikos
Bothe, Karsten
Dunlop, Ewan D.
Hohl‐Ebinger, Jochen
Rauer, Michael
Yoshita, Masahiro
Hao, Xiaojing
Green, Martin A.
Author_xml – sequence: 1
  givenname: Martin A.
  orcidid: 0000-0002-8860-396X
  surname: Green
  fullname: Green, Martin A.
  email: m.green@unsw.edu.au
  organization: University of New South Wales
– sequence: 2
  givenname: Ewan D.
  surname: Dunlop
  fullname: Dunlop, Ewan D.
  organization: European Commission – Joint Research Centre
– sequence: 3
  givenname: Jochen
  surname: Hohl‐Ebinger
  fullname: Hohl‐Ebinger, Jochen
  organization: Fraunhofer‐Institute for Solar Energy Systems
– sequence: 4
  givenname: Masahiro
  surname: Yoshita
  fullname: Yoshita, Masahiro
  organization: Renewable Energy Research Center (RENRC), National Institute of Advanced Industrial Science and Technology (AIST)
– sequence: 5
  givenname: Nikos
  surname: Kopidakis
  fullname: Kopidakis, Nikos
  organization: National Renewable Energy Laboratory
– sequence: 6
  givenname: Karsten
  surname: Bothe
  fullname: Bothe, Karsten
  organization: Institute for Solar Energy ResearchGmbH (ISFH)
– sequence: 7
  givenname: David
  surname: Hinken
  fullname: Hinken, David
  organization: Institute for Solar Energy ResearchGmbH (ISFH)
– sequence: 8
  givenname: Michael
  orcidid: 0000-0002-4150-6150
  surname: Rauer
  fullname: Rauer, Michael
  organization: Fraunhofer‐Institute for Solar Energy Systems
– sequence: 9
  givenname: Xiaojing
  surname: Hao
  fullname: Hao, Xiaojing
  organization: University of New South Wales
BackLink https://www.osti.gov/biblio/1871348$$D View this record in Osti.gov
BookMark eNp10EtLAzEUBeAgFWyr4E8YdNMupuYxmUyWUnwUChZ84C5k0htMGZMxmSL9904dt67uXXwcDmeCRj54QOiS4AXBmN60rl0wLvkJGhMsZU64fB8d_5LmQkp-hiYp7TAmopLlGM2fQ6NjZqBpMrDWGQfeHLJO1w2kbPYGMbngsxLPz9Gp1U2Ci787Ra_3dy_Lx3z99LBa3q5zwzjmOTBZg8DUWtC1LQX0ZSyvOAGOSS1Al4bQLciCCss0FYIVIEuBRU25rtiWTdHVkBtS51QyrgPzYYL3YDpFKkFYUfXoekBtDF97SJ3ahX30fS9FS8GrondFr2aDMjGkFMGqNrpPHQ-KYHVcS_VrqeNaPc0H-u0aOPzr1Ga1-fU_quBpzw
CitedBy_id crossref_primary_10_1002_pip_3741
crossref_primary_10_1039_D3TA05018A
crossref_primary_10_1038_s41560_023_01444_z
crossref_primary_10_1016_j_jallcom_2022_167313
crossref_primary_10_1063_5_0113110
crossref_primary_10_1016_j_jallcom_2022_166100
crossref_primary_10_1109_JPHOTOV_2024_3355405
crossref_primary_10_1007_s10854_022_09565_z
crossref_primary_10_1021_acsenergylett_3c01347
crossref_primary_10_35848_1882_0786_acea18
crossref_primary_10_1016_j_mssp_2023_107699
crossref_primary_10_1021_acssuschemeng_2c05816
crossref_primary_10_3390_nano13142058
crossref_primary_10_1021_acssuschemeng_2c05812
crossref_primary_10_1002_smll_202301939
crossref_primary_10_3740_MRSK_2022_32_11_481
crossref_primary_10_1002_adfm_202309764
crossref_primary_10_1016_j_mssp_2023_107453
crossref_primary_10_1016_j_mssp_2023_107450
crossref_primary_10_1021_acsphotonics_2c01652
crossref_primary_10_1080_15567249_2024_2373422
crossref_primary_10_1109_JPHOTOV_2023_3291048
crossref_primary_10_1002_pip_3750
crossref_primary_10_1016_j_physb_2023_414839
crossref_primary_10_1002_pip_3644
crossref_primary_10_35848_1347_4065_acc1ef
crossref_primary_10_1002_pip_3646
crossref_primary_10_1039_D3RA01692G
crossref_primary_10_3390_en16114292
crossref_primary_10_1039_D2EE03708D
crossref_primary_10_1088_1402_4896_acdc65
crossref_primary_10_1002_adom_202300697
crossref_primary_10_1021_acsaem_2c02649
crossref_primary_10_3390_en16104137
crossref_primary_10_1002_admi_202202171
crossref_primary_10_1021_prechem_3c00018
crossref_primary_10_1038_s41528_023_00250_7
crossref_primary_10_1021_acs_energyfuels_3c00462
crossref_primary_10_1016_j_enconman_2024_118391
crossref_primary_10_1016_j_surfin_2022_102384
crossref_primary_10_3762_bjnano_14_59
crossref_primary_10_1021_acsami_2c22174
crossref_primary_10_1016_j_apsusc_2023_156783
crossref_primary_10_1016_j_solmat_2022_111988
crossref_primary_10_1002_solr_202300316
crossref_primary_10_1088_2631_8695_accf60
crossref_primary_10_1007_s11082_023_05320_8
crossref_primary_10_1039_D2CP04213D
crossref_primary_10_1007_s42341_023_00430_2
crossref_primary_10_1088_1402_4896_ad482c
crossref_primary_10_1002_smll_202207966
crossref_primary_10_1002_pip_3704
crossref_primary_10_1364_OME_503990
crossref_primary_10_1016_j_cej_2023_142999
crossref_primary_10_1002_smll_202403413
crossref_primary_10_1002_aenm_202203313
crossref_primary_10_1016_j_comptc_2024_114581
crossref_primary_10_3390_mi14040806
crossref_primary_10_1002_pip_3831
crossref_primary_10_1021_acsenergylett_3c00568
crossref_primary_10_1380_vss_66_103
crossref_primary_10_1016_j_optmat_2023_113444
crossref_primary_10_1007_s11664_023_10308_x
crossref_primary_10_1016_j_mtcomm_2023_106905
crossref_primary_10_1186_s11671_023_03865_x
crossref_primary_10_3390_polym15112578
crossref_primary_10_1002_pip_3726
crossref_primary_10_1021_acsenergylett_2c02841
crossref_primary_10_1002_solr_202300502
crossref_primary_10_1002_smtd_202300432
crossref_primary_10_1002_solr_202200662
crossref_primary_10_1038_s41598_024_56424_4
crossref_primary_10_1051_epjpv_2023007
crossref_primary_10_1002_aenm_202202438
crossref_primary_10_1051_epjpv_2023009
crossref_primary_10_26634_jee_16_4_19766
crossref_primary_10_3390_pr10101980
crossref_primary_10_1016_j_physleta_2024_129662
crossref_primary_10_1016_j_tsep_2024_102501
crossref_primary_10_1002_solr_202300873
crossref_primary_10_3103_S0003701X22601065
crossref_primary_10_1007_s11708_023_0871_y
crossref_primary_10_1016_j_renene_2023_119235
crossref_primary_10_1021_jacs_2c07567
crossref_primary_10_1002_aenm_202300254
crossref_primary_10_1038_s41570_023_00492_z
crossref_primary_10_1016_j_heliyon_2024_e24689
crossref_primary_10_1021_acsaem_4c00346
crossref_primary_10_1051_epjpv_2022020
crossref_primary_10_1021_acsami_3c16361
crossref_primary_10_1039_D3DT02960C
crossref_primary_10_1088_1402_4896_acce7c
crossref_primary_10_3390_nano13121886
crossref_primary_10_1007_s13369_023_08645_4
crossref_primary_10_1002_zaac_202300045
crossref_primary_10_1016_j_ecmx_2024_100580
crossref_primary_10_1016_j_jechem_2023_06_014
crossref_primary_10_1021_acscentsci_2c01077
crossref_primary_10_1039_D2MA00700B
crossref_primary_10_59324_ejtas_2024_2_1__04
crossref_primary_10_59324_ejtas_2024_2_1__05
crossref_primary_10_1016_j_solmat_2023_112243
crossref_primary_10_1016_j_scib_2023_06_021
crossref_primary_10_1140_epjp_s13360_022_03291_5
crossref_primary_10_1016_j_solener_2023_111905
crossref_primary_10_1002_adts_202300078
crossref_primary_10_1126_sciadv_add0377
crossref_primary_10_1007_s10800_023_02013_8
crossref_primary_10_1016_j_jechem_2022_08_031
crossref_primary_10_59324_ejaset_2024_2_2__13
crossref_primary_10_1007_s10854_022_09293_4
crossref_primary_10_1002_solr_202300185
crossref_primary_10_59324_ejaset_2024_2_2__09
crossref_primary_10_1016_j_solmat_2022_112094
crossref_primary_10_1039_D3TC04126C
crossref_primary_10_1039_D2MA01089E
crossref_primary_10_1016_j_cej_2023_141292
crossref_primary_10_1002_ente_202200748
crossref_primary_10_1039_D3TA01708G
crossref_primary_10_3390_nano13060983
crossref_primary_10_1016_j_jmrt_2023_08_058
crossref_primary_10_1038_s41598_022_19122_7
crossref_primary_10_1038_s41586_023_06278_z
crossref_primary_10_1088_1742_6596_2432_1_012009
crossref_primary_10_1557_s43578_023_01232_1
crossref_primary_10_1007_s10854_023_11366_x
crossref_primary_10_1002_solr_202300273
crossref_primary_10_1016_j_solmat_2023_112589
crossref_primary_10_1063_5_0151205
crossref_primary_10_3788_LOP221606
crossref_primary_10_1002_solr_202300156
crossref_primary_10_1021_acsenergylett_3c01168
crossref_primary_10_1002_advs_202301873
crossref_primary_10_1039_D3TA03369D
crossref_primary_10_1016_j_chemphys_2024_112370
crossref_primary_10_3390_en16031296
crossref_primary_10_1063_5_0143834
crossref_primary_10_1364_AO_471396
crossref_primary_10_59324_ejtas_2024_2_1__34
crossref_primary_10_1021_acsami_3c02571
crossref_primary_10_1002_adom_202301008
crossref_primary_10_1002_solr_202300043
crossref_primary_10_1002_pip_3667
crossref_primary_10_1002_pip_3789
crossref_primary_10_1134_S0018143924010181
crossref_primary_10_1016_j_enconman_2023_116951
crossref_primary_10_1016_j_apenergy_2024_123037
crossref_primary_10_1016_j_joule_2022_09_006
crossref_primary_10_1016_j_jallcom_2023_172037
crossref_primary_10_1021_acsaem_3c00735
crossref_primary_10_3390_cryst14020167
crossref_primary_10_1002_cjoc_202300128
crossref_primary_10_1016_j_solmat_2023_112289
crossref_primary_10_1088_2053_1591_acb982
crossref_primary_10_1002_ente_202200676
crossref_primary_10_59324_ejaset_2024_2_1__05
crossref_primary_10_1088_1742_6596_2431_1_012064
crossref_primary_10_1002_pip_3784
crossref_primary_10_1002_solr_202200914
crossref_primary_10_1039_D2FD00132B
crossref_primary_10_1002_pip_3676
crossref_primary_10_1016_j_rser_2022_113027
crossref_primary_10_1016_j_enconman_2023_116940
crossref_primary_10_1002_adma_202204366
crossref_primary_10_1016_j_isci_2022_104858
crossref_primary_10_1002_pip_3790
crossref_primary_10_1016_j_ceramint_2022_12_195
crossref_primary_10_1002_cphc_202400333
crossref_primary_10_1002_admi_202201677
crossref_primary_10_1002_aenm_202302124
crossref_primary_10_1002_smll_202302314
crossref_primary_10_1021_acs_chemrev_2c00773
crossref_primary_10_1002_admi_202201438
crossref_primary_10_1186_s43593_022_00028_w
crossref_primary_10_1016_j_jechem_2022_12_029
crossref_primary_10_1021_acsaem_2c02609
crossref_primary_10_1016_j_solmat_2023_112388
crossref_primary_10_1038_s41586_023_05992_y
crossref_primary_10_1016_j_mssp_2022_107172
crossref_primary_10_1002_adfm_202308333
crossref_primary_10_3390_nano13111724
crossref_primary_10_3390_en17071629
crossref_primary_10_1364_OME_481866
crossref_primary_10_1039_D3CE01165H
crossref_primary_10_1093_nsr_nwad085
crossref_primary_10_1002_solr_202300486
crossref_primary_10_1016_j_solmat_2023_112376
crossref_primary_10_1021_acsmaterialslett_2c01001
crossref_primary_10_1002_admt_202201447
crossref_primary_10_1039_D3QM01179H
crossref_primary_10_1063_5_0141029
crossref_primary_10_3390_en16010425
crossref_primary_10_1021_acs_chemrev_3c00667
crossref_primary_10_3390_en15218192
crossref_primary_10_3390_ma16114106
crossref_primary_10_1088_2053_1591_ad1077
crossref_primary_10_1038_s41586_023_06006_7
crossref_primary_10_1016_j_solmat_2023_112647
crossref_primary_10_1016_j_solmat_2023_112523
crossref_primary_10_1002_solr_202201008
crossref_primary_10_1016_j_inoche_2022_109952
crossref_primary_10_1016_j_jallcom_2023_170215
crossref_primary_10_1002_smll_202303213
crossref_primary_10_1021_acs_energyfuels_2c03642
crossref_primary_10_1021_acs_est_2c05815
crossref_primary_10_1002_aesr_202200132
crossref_primary_10_1016_j_joule_2023_05_019
crossref_primary_10_3390_en16010319
crossref_primary_10_1016_j_mtcomm_2024_108629
crossref_primary_10_1002_adma_202210834
crossref_primary_10_1016_j_solmat_2023_112632
crossref_primary_10_1021_acs_energyfuels_3c04392
crossref_primary_10_1016_j_solener_2022_11_049
crossref_primary_10_1016_j_jechem_2022_11_039
crossref_primary_10_1063_5_0130395
crossref_primary_10_1016_j_mtcomm_2024_108514
crossref_primary_10_1088_1361_6463_acd85d
crossref_primary_10_1021_acs_jpcc_2c06147
crossref_primary_10_1038_s41578_023_00582_w
crossref_primary_10_59324_ejtas_2023_1_5__129
crossref_primary_10_1002_adem_202400636
crossref_primary_10_59324_ejtas_2023_1_5__128
crossref_primary_10_1002_adfm_202211315
crossref_primary_10_1088_2053_1591_acffab
crossref_primary_10_3390_inorganics11040159
crossref_primary_10_1016_j_solener_2023_04_015
crossref_primary_10_3390_en15155753
crossref_primary_10_3390_inorganics11040153
crossref_primary_10_1016_j_jpowsour_2022_232368
crossref_primary_10_3390_ma16124254
crossref_primary_10_1016_j_solmat_2022_112034
crossref_primary_10_1002_aesr_202200149
crossref_primary_10_1088_2040_8986_ad33a6
crossref_primary_10_1007_s40820_022_00916_3
crossref_primary_10_1016_j_solener_2023_05_052
crossref_primary_10_1016_j_ceramint_2023_11_370
crossref_primary_10_59324_ejaset_2024_2_3__08
crossref_primary_10_1016_j_solidstatesciences_2024_107522
crossref_primary_10_1021_acsaem_3c02761
crossref_primary_10_59324_ejaset_2024_2_3__09
crossref_primary_10_1021_acs_chemmater_3c01688
crossref_primary_10_1039_D3TC00591G
crossref_primary_10_1002_adma_202208320
crossref_primary_10_59324_ejtas_2023_1_6__25
crossref_primary_10_1039_D4NR01053A
crossref_primary_10_59324_ejtas_2023_1_6__23
crossref_primary_10_1016_j_joule_2022_12_012
crossref_primary_10_59324_ejaset_2024_2_3__10
crossref_primary_10_3389_fenrg_2023_1118654
crossref_primary_10_1021_acsaem_2c03072
crossref_primary_10_1007_s10854_024_12658_6
crossref_primary_10_35848_1347_4065_acd9b8
crossref_primary_10_3390_en16031158
crossref_primary_10_1016_j_renene_2024_120057
crossref_primary_10_1039_D3NR00218G
crossref_primary_10_1016_j_optmat_2024_115492
crossref_primary_10_1002_apxr_202200045
crossref_primary_10_1016_j_optmat_2024_115242
crossref_primary_10_1016_j_technovation_2023_102921
crossref_primary_10_1007_s10854_023_09818_5
crossref_primary_10_1016_j_jpcs_2024_111951
crossref_primary_10_1038_s43246_022_00281_z
crossref_primary_10_59324_ejaset_2024_2_3__03
crossref_primary_10_1007_s11082_023_04734_8
crossref_primary_10_59324_ejaset_2024_2_3__04
crossref_primary_10_1021_acs_jpclett_2c02414
crossref_primary_10_1002_aenm_202301555
crossref_primary_10_1002_pssa_202300121
crossref_primary_10_35848_1347_4065_acc593
crossref_primary_10_1002_solr_202201072
crossref_primary_10_1016_j_mssp_2022_107202
crossref_primary_10_1007_s40843_022_2246_2
crossref_primary_10_1088_1361_6641_ac9f63
crossref_primary_10_1109_TNANO_2023_3306546
crossref_primary_10_3390_en16196862
crossref_primary_10_1016_j_solmat_2022_112109
crossref_primary_10_1016_j_solmat_2023_112428
crossref_primary_10_1002_adma_202211959
crossref_primary_10_1007_s12633_022_02150_3
crossref_primary_10_1038_s41578_022_00521_1
crossref_primary_10_1002_solr_202300199
crossref_primary_10_1016_j_solmat_2023_112541
crossref_primary_10_1016_j_cej_2022_140596
crossref_primary_10_1002_cey2_336
crossref_primary_10_1103_PRXEnergy_2_013006
crossref_primary_10_1002_adma_202300352
crossref_primary_10_1002_smll_202302250
crossref_primary_10_1021_acs_chemmater_2c03065
crossref_primary_10_3897_j_moem_9_3_111530
crossref_primary_10_3390_photonics9110837
crossref_primary_10_1016_j_solmat_2023_112413
crossref_primary_10_1016_j_ijleo_2024_171882
crossref_primary_10_1016_j_eng_2022_10_012
crossref_primary_10_1021_acsenergylett_3c00656
crossref_primary_10_1109_JPHOTOV_2023_3284588
crossref_primary_10_1002_adsu_202300188
crossref_primary_10_1007_s11468_024_02281_w
crossref_primary_10_1016_j_enconman_2023_117289
crossref_primary_10_1016_j_surfin_2023_103246
crossref_primary_10_1016_j_actaastro_2023_11_008
crossref_primary_10_1002_advs_202205967
crossref_primary_10_1039_D3CE01019H
crossref_primary_10_1088_1402_4896_acf80c
crossref_primary_10_1002_solr_202200556
crossref_primary_10_1016_j_rio_2023_100596
crossref_primary_10_1021_acsaem_3c00378
crossref_primary_10_1021_acsaem_3c00134
crossref_primary_10_1039_D3TA01218B
crossref_primary_10_1039_D2TA09696J
crossref_primary_10_1016_j_cej_2023_148133
crossref_primary_10_3390_ma16186107
crossref_primary_10_1007_s11664_023_10491_x
crossref_primary_10_1016_j_heliyon_2023_e16462
crossref_primary_10_1039_D3TC00378G
crossref_primary_10_3390_cryst13030370
crossref_primary_10_15251_CL_2023_2011_797
crossref_primary_10_1002_aenm_202203366
crossref_primary_10_1002_smtd_202201467
crossref_primary_10_1007_s40820_023_01088_4
crossref_primary_10_23919_IEN_2023_0026
crossref_primary_10_1021_acsmaterialslett_3c01094
crossref_primary_10_1002_gch2_202200146
crossref_primary_10_1080_15567036_2024_2316244
crossref_primary_10_35848_1347_4065_acb11b
crossref_primary_10_1039_D2TC02351B
crossref_primary_10_1007_s00339_023_06483_7
crossref_primary_10_1002_solr_202300828
crossref_primary_10_1007_s11426_022_1426_x
crossref_primary_10_1007_s11468_023_02031_4
crossref_primary_10_1038_s41578_023_00610_9
crossref_primary_10_1002_pip_3801
crossref_primary_10_1016_j_jssc_2024_124641
crossref_primary_10_1016_j_jallcom_2023_169874
crossref_primary_10_1007_s40820_023_01040_6
crossref_primary_10_1038_s41427_023_00474_z
crossref_primary_10_3103_S0003701X23600959
crossref_primary_10_1039_D3TC01792C
crossref_primary_10_1021_acsami_2c11677
crossref_primary_10_1016_j_apsusc_2022_155439
crossref_primary_10_3389_fphot_2022_1050189
crossref_primary_10_1007_s12613_022_2552_y
crossref_primary_10_1364_AO_518102
crossref_primary_10_1002_pip_3814
crossref_primary_10_1016_j_solener_2023_06_009
crossref_primary_10_3390_su151310554
crossref_primary_10_1007_s12598_024_02736_3
crossref_primary_10_1134_S1068337223010024
crossref_primary_10_1002_adfm_202300089
crossref_primary_10_3390_solar3040031
crossref_primary_10_1038_s41528_023_00266_z
crossref_primary_10_3390_nano13020250
crossref_primary_10_1038_s41467_023_36141_8
crossref_primary_10_1016_j_jscs_2023_101694
crossref_primary_10_54227_mlab_20220047
crossref_primary_10_1016_j_mssp_2023_107940
crossref_primary_10_7498_aps_72_20230352
crossref_primary_10_1039_D2EE04007G
crossref_primary_10_1016_j_mssp_2023_107821
crossref_primary_10_1016_j_optlastec_2022_108500
crossref_primary_10_1002_adma_202207199
crossref_primary_10_1016_j_rser_2024_114368
crossref_primary_10_1016_j_apenergy_2024_123833
crossref_primary_10_1016_j_gee_2023_05_006
crossref_primary_10_1039_D2NR05808A
crossref_primary_10_1088_2058_8585_acb0e0
crossref_primary_10_1002_adfm_202307949
crossref_primary_10_1002_admi_202300327
crossref_primary_10_1016_j_nanoen_2024_109847
crossref_primary_10_1016_j_jcrysgro_2023_127132
crossref_primary_10_54503_0002_3035_2023_58_1_118
crossref_primary_10_1016_j_jechem_2023_04_036
crossref_primary_10_1016_j_scs_2023_104547
crossref_primary_10_1016_j_xcrp_2022_101038
crossref_primary_10_1021_acs_energyfuels_3c04627
crossref_primary_10_1021_acsami_3c00895
crossref_primary_10_1021_acs_energyfuels_3c03419
crossref_primary_10_1016_j_solmat_2022_111889
crossref_primary_10_1002_adom_202301949
crossref_primary_10_35848_1347_4065_acc665
crossref_primary_10_1016_j_jssc_2024_124832
crossref_primary_10_1002_aenm_202203046
crossref_primary_10_1039_D2EE03136A
crossref_primary_10_1002_adfm_202303455
crossref_primary_10_1002_ente_202201078
crossref_primary_10_1021_acsaem_2c02291
crossref_primary_10_3390_catal14060388
crossref_primary_10_1007_s11468_024_02349_7
crossref_primary_10_1016_j_mset_2023_05_001
crossref_primary_10_1002_ente_202300608
crossref_primary_10_3390_ma15217621
crossref_primary_10_1364_OL_475800
crossref_primary_10_1002_pssa_202300529
crossref_primary_10_3390_sym15091718
crossref_primary_10_1007_s40843_022_2231_9
crossref_primary_10_1039_D3TA00455D
crossref_primary_10_1039_D3TA04604D
crossref_primary_10_1039_D2NR06115E
crossref_primary_10_1021_acs_jpcc_2c09063
crossref_primary_10_1016_j_mtcomm_2023_105431
crossref_primary_10_1088_2752_5724_acba35
crossref_primary_10_1380_vss_66_91
crossref_primary_10_1016_j_jpcs_2023_111353
crossref_primary_10_1007_s10853_024_09381_2
crossref_primary_10_1038_s41528_022_00224_1
crossref_primary_10_1380_vss_66_97
Cites_doi 10.1002/pip.3410
10.1109/JPHOTOV.2015.2501729
10.1002/pip.2612
10.1063/1.4907001
10.1038/s41560‐018‐0206‐0
10.1002/solr.202000763
10.1109/16.370024
10.1109/PVSC.2011.6185831
10.1063/1.4931553
10.7567/APEX.11.022301
10.1038/nenergy.2017.144
10.1002/pip.424
10.1002/pip.3506
10.1016/j.solmat.2018.06.020
10.1109/JPHOTOV.2019.2937218
10.1002/solr.202000802
10.1109/PVSC.2012.6318255
10.1002/adma.202110569
10.1038/s41560‐019‐0466‐3
10.1002/aenm.201600046
10.1063/1.49669986
10.1126/science.aaz5074
10.1002/pssr.200802186
10.1016/j.solmat.2015.08.022
10.1039/C5TA00358J
10.7567/JJAP.54.08KB10
10.1109/JPHOTOV.2017.2778567
10.7567/JJAP.57.08RE11
10.1016/j.egypro.2017.09.329
10.1016/j.solmat.2013.05.029
10.1109/JPHOTOV.2015.2493365
10.1038/s41560‐021‐00966‐8
10.1016/j.solmat.2015.06.055
10.1063/1.5008517
10.1016/j.solmat.2017.05.042
10.1002/adma.201104187
10.1109/JPHOTOV.2016.2551460
10.17925/HI.2019.13.1.15
10.1109/PVSC.2014.6924936
10.1109/PVSC.2014.6925503
10.1002/pip.3371
10.1002/pip.3398
10.1063/1.3054160
10.1016/S0038‐092X(03)00005‐7
10.1126/science.abb7167
10.1038/544155a
10.4229/EUPVSEC20202020‐3AO.7.2
10.1016/j.tsf.2003.10.140
10.1038/nenergy.2017.32
10.1039/C1RA00686J
10.1002/pip.880
10.1109/PVSC.1990.111743
ContentType Journal Article
Copyright 2022 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd.
2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor National Renewable Energy Laboratory (NREL), Golden, CO (United States)
CorporateAuthor_xml – name: National Renewable Energy Laboratory (NREL), Golden, CO (United States)
DBID 24P
WIN
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
OTOTI
DOI 10.1002/pip.3595
DatabaseName Wiley-Blackwell Open Access Titles
Wiley Free Content
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef

Engineering Research Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-159X
EndPage 701
ExternalDocumentID 1871348
10_1002_pip_3595
PIP3595
Genre shortCommunication
GrantInformation_xml – fundername: New Energy and Industrial Technology Development Organization
– fundername: Ministry of International Trade and Industry (MITI)
– fundername: U.S. Department of Energy (Office of Science, Office of Basic Energy Sciences and Energy Efficiency and Renewable Energy, Solar Energy Technology Program)
  funderid: DE‐AC36‐08‐GO28308
– fundername: Australian Renewable Energy Agency (ARENA)
– fundername: Japanese New Energy and Industrial Technology Development Organisation (NEDO)
– fundername: Ministry of Economy, Trade and Industry (METI)
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDH
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TWZ
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WIN
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-c3505-e39be702ffeabf67e359f5851e501b7ea6c12de9427f3a27734e96707b25a83d3
IEDL.DBID DR2
ISSN 1062-7995
IngestDate Mon Apr 01 04:53:31 EDT 2024
Fri Sep 13 04:23:51 EDT 2024
Fri Aug 23 01:04:30 EDT 2024
Sat Aug 24 01:08:00 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3505-e39be702ffeabf67e359f5851e501b7ea6c12de9427f3a27734e96707b25a83d3
Notes Funding information
Ministry of International Trade and Industry (MITI); New Energy and Industrial Technology Development Organization; U.S. Department of Energy (Office of Science, Office of Basic Energy Sciences and Energy Efficiency and Renewable Energy, Solar Energy Technology Program), Grant/Award Number: DE‐AC36‐08‐GO28308; Ministry of Economy, Trade and Industry (METI); Japanese New Energy and Industrial Technology Development Organisation (NEDO); Australian Renewable Energy Agency (ARENA)
Australian Renewable Energy Agency (ARENA)
NREL/JA-5900-83270
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office
DE‐AC36‐08‐GO28308; AC36-08GO28308
Japanese New Energy and Industrial Technology Development Organisation (NEDO)
Ministry of International Trade and Industry (MITI)
New Energy and Industrial Technology Development Organization
Ministry of Economy, Trade and Industry (METI)
ORCID 0000-0002-4150-6150
0000-0002-8860-396X
000000028860396X
0000000241506150
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpip.3595
PQID 2675848714
PQPubID 1016445
PageCount 15
ParticipantIDs osti_scitechconnect_1871348
proquest_journals_2675848714
crossref_primary_10_1002_pip_3595
wiley_primary_10_1002_pip_3595_PIP3595
PublicationCentury 2000
PublicationDate July 2022
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
– name: United Kingdom
PublicationTitle Progress in photovoltaics
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2017; 2
2016; 109
2021; 29
2002; 10
2015; 143
2020; 369
2016; 144
2015; 106
2020; 367
2008; 1
2008; 2
2018; 8
2018; 3
1990
2009; 94
2013; 117
1985
2004; 451‐452
2022; 30
2020; 45
2017; 124
2009; 17
2018; 186
2019; 9
2021; 5
2019; 4
2015; 3
2012
2011
2002; 73
2015; 54
1997
2008
2007
2017; 173
2005
1995; 42
2015; 23
2016; 6
2012; 2
2022
2021
2020
2022; 7
2018; 112
2019
2018
2017
2016
2015
2014
2013
2018; 11
2017; 544
2018; 57
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_19_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_85_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
Hosoya M (e_1_2_6_62_1) 2013
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_80_1
e_1_2_6_40_1
e_1_2_6_61_1
Sakata I (e_1_2_6_81_1) 2008; 1
e_1_2_6_82_1
Diermann R (e_1_2_6_13_1) 2021
Bheemreddy V (e_1_2_6_64_1) 2018
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
Rauer M (e_1_2_6_87_1) 2020; 45
References_xml – year: 2011
– start-page: 277
  year: 2020
  end-page: 281
– volume: 112
  issue: 5
  year: 2018
  article-title: High‐efficiency inverted metamorphic 1.7/1.1 eV GaInAsP/GaInAs dual‐junction solar cells
  publication-title: Appl Phys Lett
– start-page: 7
  year: 1985
– year: 2005
– volume: 23
  start-page: 685
  issue: 6
  year: 2015
  end-page: 691
  article-title: 40% efficient sunlight to electricity conversion
  publication-title: Prog Photovolt: Res Appl
– volume: 2
  issue: 9
  year: 2017
  article-title: Raising the one‐sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions
  publication-title: Nat Energy
– year: 2021
– volume: 29
  start-page: 887
  issue: 8
  year: 2021
  end-page: 898
  article-title: III‐V//Cu In Ga Se multijunction solar cells with 27.2% efficiency fabricated using modified smart stack technology with Pd nanoparticle array and adhesive material
  publication-title: Prog Photovolt Res Appl
– start-page: 2012
  year: 2008
  end-page: 2016
– volume: 186
  start-page: 184
  year: 2018
  end-page: 193
  article-title: Laser contact openings for local poly‐Si‐metal contacts enabling 26.1%‐efficient POLO‐IBC solar cells
  publication-title: Sol Energy Mater Sol Cells
– volume: 54
  issue: 8S1
  year: 2015
  article-title: High‐efficiency thin‐film silicon solar cells realized by integrating stable a‐Si:H absorbers into improved device design
  publication-title: Jpn J Appl Phys
– volume: 2
  start-page: 882
  issue: 3
  year: 2012
  end-page: 893
  article-title: The ISOS‐3 inter‐laboratory collaboration focused on the stability of a variety of organic photovoltaic devices
  publication-title: RSC Adv
– volume: 9
  start-page: 1863
  issue: 6
  year: 2019
  end-page: 1867
  article-title: Cd‐free Cu (In,Ga)(Se,S)2 thin‐film solar cell with a new world record efficacy of 23.35%
  publication-title: 46th IEEE PVSC
– year: 2014
– volume: 173
  start-page: 96
  year: 2017
  end-page: 105
  article-title: n‐Type Si solar cells with passivating electron contact: identifying sources for efficiency limitations by wafer thickness and resistivity variation
  publication-title: Sol Energy Mater Sol Cells
– volume: 106
  issue: 5
  year: 2015
  article-title: High‐efficiency amorphous silicon solar cells: impact of deposition rate on metastability
  publication-title: Appl Phys Lett
– volume: 3
  start-page: 8139
  issue: 15
  year: 2015
  end-page: 8147
  article-title: Degradation observations of encapsulated planar CH NH PbI perovskite solar cells at high temperatures and humidity
  publication-title: J Mater Chem A
– volume: 144
  start-page: 84
  year: 2016
  end-page: 95
  article-title: Improved conversion efficiencies of thin‐film silicon tandem (MICROMORPH™) photovoltaic modules
  publication-title: Sol Energy Mater Sol Cells
– volume: 6
  start-page: 343
  issue: 1
  year: 2016
  end-page: 349
  article-title: Four‐junction wafer‐bonded concentrator solar cells
  publication-title: IEEE J Photovolt
– volume: 143
  start-page: 190
  year: 2015
  end-page: 197
  article-title: The passivated emitter and rear cell (PERC): From conception to mass production
  publication-title: Sol Energy Mater Sol Cells
– volume: 8
  start-page: 626
  issue: 2
  year: 2018
  end-page: 632
  article-title: Building a six‐junction inverted metamorphic concentrator solar cell
  publication-title: IEEE J Photovolt
– volume: 45
  start-page: 8
  year: 2020
  end-page: 18
  article-title: The challenge of measuring busbarless solar cells and the impact on cell‐to‐module losses
  publication-title: Photovolt Int
– volume: 117
  start-page: 67
  year: 2013
  end-page: 72
  article-title: Ageing of DSSC studied by electroluminescence and transmission imaging
  publication-title: Sol Energy Mater Sol Cells
– volume: 124
  start-page: 84
  year: 2017
  end-page: 90
  article-title: Impact of contacting geometries on measured fill factors
  publication-title: Energy Proc
– volume: 30
  start-page: 3
  issue: 1
  year: 2022
  end-page: 12
  article-title: Solar cell efficiency tables (Version 59)
  publication-title: Prog Photovolt: Res Appl
– volume: 94
  issue: 1
  year: 2009
  article-title: Integrated dye‐sensitized solar cell module with conversion efficiency of 8.2%
  publication-title: Appl Phys Lett
– volume: 10
  start-page: 41
  issue: 1
  year: 2002
  end-page: 46
  article-title: A 21.5% efficient Cu (In,Ga)Se2 thin‐film concentrator solar cell
  publication-title: Prog Photovolt: Res Appl
– year: 2019
– start-page: 574
  end-page: 578
  article-title: Silicon‐based monolithic triple‐junction solar cells with conversion efficiency >34%
  publication-title: 37th European Photovoltaic Solar Energy Conference and Exhibition
– volume: 2
  start-page: 257
  issue: 6
  year: 2008
  end-page: 259
  article-title: A luminescent solar concentrator with 7.1% power conversion efficiency
  publication-title: Phys Stat Sol (RRL)
– volume: 1
  start-page: 1
  year: 2008
  end-page: 4
  article-title: Japans new national R&D program for photovoltaics
  publication-title: Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference
– year: 2015
– volume: 6
  issue: 12
  year: 2016
  article-title: Beyond 9% efficient kesterite Cu ZnSnS solar cell: fabricated by using Zn Cd S buffer layer
  publication-title: Adv Energy Mater
– start-page: 1202
  year: 2014
  end-page: 1207
– start-page: 31
  year: 1997
  end-page: 36
– volume: 544
  start-page: 155
  issue: 7649
  year: 2017
  end-page: 156
  article-title: Make perovskite solar cells stable
  publication-title: Nature
– volume: 3
  start-page: 764
  issue: 9
  year: 2018
  end-page: 772
  article-title: Cu ZnSn S solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment
  publication-title: Nat Energy
– volume: 73
  start-page: 443
  issue: 6
  year: 2002
  end-page: 467
  article-title: Proposed reference irradiance spectra for solar energy systems testing
  publication-title: Solar Energy
– year: 2007
– volume: 4
  start-page: 864
  issue: 10
  year: 2019
  end-page: 873
  article-title: Monolithic all‐perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn (II) oxidation in precursor ink
  publication-title: Nat Energy
– volume: 7
  start-page: 229
  issue: 3
  year: 2022
  end-page: 237
  article-title: Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer
  publication-title: Nat Energy
– start-page: 1249
  year: 2018
  end-page: 1251
  article-title: Life prediction model development for flexible photovoltaic modules using accelerated damp heat testing
  publication-title: IEEE 7th World Conf. on Photovoltaic Energy Conversion (WCPEC)
– volume: 42
  start-page: 144
  issue: 1
  year: 1995
  end-page: 149
  article-title: Large area, concentrator buried contact solar cells
  publication-title: IEEE Trans Electron Dev
– volume: 6
  start-page: 326
  issue: 1
  year: 2016
  end-page: 331
  article-title: GaAs P /Si dual‐junction solar cells grown by MBE and MOCVD
  publication-title: IEEE J Photovolt
– year: 2016
– year: 2021
  article-title: Avancis claims 19.64% efficiency for CIGS module
  publication-title: PV Magazine International
– volume: 2
  issue: 5
  year: 2017
  article-title: Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%
  publication-title: Nat Energy
– year: 2012
– volume: 5
  issue: 4
  year: 2021
  article-title: A 1 cm organic solar cell with 15.2% certified efficiency: detailed characterization and identification of optimization potential
  publication-title: Sol RRL
– volume: 367
  start-page: 1097
  issue: 6482
  year: 2020
  end-page: 1104
  article-title: Triple‐halide wide‐band gap perovskites with suppressed phase segregation for efficient tandems
  publication-title: Science
– volume: 109
  year: 2016
  article-title: Stabilized 14.0%‐efficient triple‐junction thin‐film silicon solar cell
  publication-title: Appl Phys Lett
– volume: 6
  start-page: 1020
  issue: 4
  year: 2016
  end-page: 1024
  article-title: 43% sunlight to electricity conversion efficiency using CPV
  publication-title: IEEE J Photovolt
– volume: 17
  start-page: 85
  issue: 1
  year: 2009
  end-page: 94
  article-title: Solar cell efficiency tables (Version 33)
  publication-title: Prog Photovolt: Res Appl
– volume: 5
  year: 2021
  article-title: Epitaxial GaInP/GaAs/Si triple‐junction solar cell with 25.9% AM1.5g efficiency enabled by transparent metamorphic Al Ga As P step‐graded buffer structures
  publication-title: Sol RRL
– volume: 29
  start-page: 614
  issue: 6
  year: 2021
  end-page: 629
  article-title: Power rating procedure of hybrid CPV/PV bifacial modules
  publication-title: Prog Photovolt Res Appl
– year: 2022
  article-title: High‐performance organic solar modules via the bilayer‐merged‐annealing assisted blading coating
  publication-title: Adv Mater
– volume: 11
  issue: 2
  year: 2018
  article-title: Thin‐film microcrystalline silicon solar cells: 11.9% efficiency and beyond
  publication-title: Appl Phys Express
– volume: 57
  issue: 8S3
  year: 2018
  article-title: Largest highly efficient 203 x 203 mm CH NH PbI perovskite solar modules
  publication-title: Jpn J Appl Phys
– volume: 451‐452
  start-page: 448
  year: 2004
  end-page: 454
– start-page: 915
  year: 2016
  end-page: 921
– volume: 29
  start-page: 3
  issue: 1
  year: 2021
  end-page: 15
  article-title: Solar cell efficiency tables (Version 57)
  publication-title: Prog Photovolt: Res Appl
– start-page: 861
  year: 1990
  end-page: 863
  article-title: A 20% efficient photovoltaic concentrator module
  publication-title: Conf Record, 21st IEEE Photovoltaic Specialists Conference, Kissimimee
– year: 2017
– start-page: 21
  year: 2013
  end-page: 37
  article-title: Organic thin film photovoltaic modules
  publication-title: Proceedings of the 93rd Annual Meeting of the Chemical Society of Japan
– volume: 369
  start-page: 1615
  issue: 6511
  year: 2020
  end-page: 1620
  article-title: Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3‐V voltage loss
  publication-title: Science
– year: 2013
– ident: e_1_2_6_76_1
  doi: 10.1002/pip.3410
– ident: e_1_2_6_68_1
– ident: e_1_2_6_67_1
  doi: 10.1109/JPHOTOV.2015.2501729
– ident: e_1_2_6_72_1
  doi: 10.1002/pip.2612
– ident: e_1_2_6_17_1
  doi: 10.1063/1.4907001
– ident: e_1_2_6_37_1
– ident: e_1_2_6_16_1
  doi: 10.1038/s41560‐018‐0206‐0
– ident: e_1_2_6_14_1
– ident: e_1_2_6_45_1
  doi: 10.1002/solr.202000763
– ident: e_1_2_6_77_1
  doi: 10.1109/16.370024
– ident: e_1_2_6_9_1
  doi: 10.1109/PVSC.2011.6185831
– ident: e_1_2_6_59_1
– ident: e_1_2_6_22_1
– ident: e_1_2_6_75_1
  doi: 10.1063/1.4931553
– ident: e_1_2_6_18_1
  doi: 10.7567/APEX.11.022301
– volume: 45
  start-page: 8
  year: 2020
  ident: e_1_2_6_87_1
  article-title: The challenge of measuring busbarless solar cells and the impact on cell‐to‐module losses
  publication-title: Photovolt Int
  contributor:
    fullname: Rauer M
– ident: e_1_2_6_36_1
– ident: e_1_2_6_44_1
  doi: 10.1038/nenergy.2017.144
– ident: e_1_2_6_66_1
  doi: 10.1002/pip.424
– ident: e_1_2_6_2_1
  doi: 10.1002/pip.3506
– ident: e_1_2_6_33_1
  doi: 10.1016/j.solmat.2018.06.020
– ident: e_1_2_6_83_1
– ident: e_1_2_6_12_1
  doi: 10.1109/JPHOTOV.2019.2937218
– ident: e_1_2_6_80_1
– ident: e_1_2_6_23_1
  doi: 10.1002/solr.202000802
– ident: e_1_2_6_47_1
– ident: e_1_2_6_57_1
  doi: 10.1109/PVSC.2012.6318255
– ident: e_1_2_6_24_1
  doi: 10.1002/adma.202110569
– ident: e_1_2_6_49_1
  doi: 10.1038/s41560‐019‐0466‐3
– ident: e_1_2_6_69_1
– ident: e_1_2_6_39_1
  doi: 10.1002/aenm.201600046
– ident: e_1_2_6_50_1
  doi: 10.1063/1.49669986
– ident: e_1_2_6_19_1
  doi: 10.1126/science.aaz5074
– start-page: 21
  year: 2013
  ident: e_1_2_6_62_1
  article-title: Organic thin film photovoltaic modules
  publication-title: Proceedings of the 93rd Annual Meeting of the Chemical Society of Japan
  contributor:
    fullname: Hosoya M
– ident: e_1_2_6_78_1
  doi: 10.1002/pssr.200802186
– ident: e_1_2_6_6_1
– ident: e_1_2_6_60_1
  doi: 10.1016/j.solmat.2015.08.022
– ident: e_1_2_6_88_1
– ident: e_1_2_6_15_1
– ident: e_1_2_6_26_1
  doi: 10.1039/C5TA00358J
– ident: e_1_2_6_51_1
  doi: 10.7567/JJAP.54.08KB10
– ident: e_1_2_6_53_1
  doi: 10.1109/JPHOTOV.2017.2778567
– ident: e_1_2_6_61_1
  doi: 10.7567/JJAP.57.08RE11
– ident: e_1_2_6_85_1
  doi: 10.1016/j.egypro.2017.09.329
– ident: e_1_2_6_28_1
  doi: 10.1016/j.solmat.2013.05.029
– ident: e_1_2_6_46_1
  doi: 10.1109/JPHOTOV.2015.2493365
– ident: e_1_2_6_55_1
  doi: 10.1038/s41560‐021‐00966‐8
– ident: e_1_2_6_20_1
– ident: e_1_2_6_65_1
– ident: e_1_2_6_31_1
  doi: 10.1016/j.solmat.2015.06.055
– ident: e_1_2_6_70_1
  doi: 10.1063/1.5008517
– ident: e_1_2_6_32_1
  doi: 10.1016/j.solmat.2017.05.042
– ident: e_1_2_6_42_1
– ident: e_1_2_6_48_1
– ident: e_1_2_6_30_1
  doi: 10.1002/adma.201104187
– ident: e_1_2_6_11_1
– ident: e_1_2_6_74_1
– ident: e_1_2_6_56_1
– start-page: 1249
  year: 2018
  ident: e_1_2_6_64_1
  article-title: Life prediction model development for flexible photovoltaic modules using accelerated damp heat testing
  publication-title: IEEE 7th World Conf. on Photovoltaic Energy Conversion (WCPEC)
  contributor:
    fullname: Bheemreddy V
– volume: 1
  start-page: 1
  year: 2008
  ident: e_1_2_6_81_1
  article-title: Japans new national R&D program for photovoltaics
  publication-title: Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference
  contributor:
    fullname: Sakata I
– ident: e_1_2_6_7_1
– year: 2021
  ident: e_1_2_6_13_1
  article-title: Avancis claims 19.64% efficiency for CIGS module
  publication-title: PV Magazine International
  contributor:
    fullname: Diermann R
– ident: e_1_2_6_71_1
  doi: 10.1109/JPHOTOV.2016.2551460
– ident: e_1_2_6_52_1
– ident: e_1_2_6_34_1
  doi: 10.17925/HI.2019.13.1.15
– ident: e_1_2_6_25_1
– ident: e_1_2_6_86_1
– ident: e_1_2_6_41_1
– ident: e_1_2_6_63_1
  doi: 10.1109/PVSC.2014.6924936
– ident: e_1_2_6_89_1
– ident: e_1_2_6_58_1
  doi: 10.1109/PVSC.2014.6925503
– ident: e_1_2_6_4_1
  doi: 10.1002/pip.3371
– ident: e_1_2_6_54_1
  doi: 10.1002/pip.3398
– ident: e_1_2_6_10_1
– ident: e_1_2_6_21_1
  doi: 10.1063/1.3054160
– ident: e_1_2_6_79_1
  doi: 10.1016/S0038‐092X(03)00005‐7
– ident: e_1_2_6_40_1
  doi: 10.1126/science.abb7167
– ident: e_1_2_6_8_1
– ident: e_1_2_6_27_1
  doi: 10.1038/544155a
– ident: e_1_2_6_38_1
– ident: e_1_2_6_43_1
  doi: 10.4229/EUPVSEC20202020‐3AO.7.2
– ident: e_1_2_6_35_1
– ident: e_1_2_6_82_1
  doi: 10.1016/j.tsf.2003.10.140
– ident: e_1_2_6_84_1
– ident: e_1_2_6_5_1
  doi: 10.1038/nenergy.2017.32
– ident: e_1_2_6_29_1
  doi: 10.1039/C1RA00686J
– ident: e_1_2_6_3_1
  doi: 10.1002/pip.880
– ident: e_1_2_6_73_1
  doi: 10.1109/PVSC.1990.111743
SSID ssj0017896
Score 2.7285514
Snippet Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for...
Abstract Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented....
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 687
SubjectTerms energy conversion efficiency
Photovoltaic cells
photovoltaic efficiency
solar cell efficiency
Solar cells
SOLAR ENERGY
Title Solar cell efficiency tables (Version 60)
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpip.3595
https://www.proquest.com/docview/2675848714/abstract/
https://www.osti.gov/biblio/1871348
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7oTnrwtzg3pYKIO3Rrk7ZpjyKO6UGGOhh4CEmagAjbcN3Fv968tJ2bIIinXvrrveb1fV_y3heAS6qiRLBc-iGjwhKUgPqZYtpXImcmjPM8la7K9zEZjKKHcTyuqiqxF6bUh1hOuGFkuP81BriQ8963aOjszRL2OMP-ctTRQzz0tFSOClnqtuayhMcCyCyLa93ZgPTqC9cyUWNqI2oNZa5iVZds-rvwWr9mWWPy3l0Usqs-fyg4_s-OPdipMKh3Uw6afdjQkwPYXlEmPITOM1JeD6f1Pe1UJrBF0yuw0WruXVezbF4SdI5g1L97uR341a4KvqIW7viaZlKzgBijhTQJ0_bhBhcHdRyEkmmRqJDkOosIM1QQxmiks4QFTJJYpDSnx9CYTCf6BLxEMkOQX6dGR5aZyYhopS0Ay6lJLLRowkXtYT4rxTN4KZNMuDWbo9lNaKHruU34qFqrsLxHFTxMsck1bUK7_iK8Cq45J0hyLNEKoyZcOdf-enc-vB_i8fSvJ7Zgi2CDgyvIbUOj-FjoMws7CnkOmyQanrth9gUtzNIx
link.rule.ids 230,315,786,790,891,1382,11589,27957,27958,46087,46329,46511,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1qPagHv8XYqhFE7CE12U2yCZ5ElKpVRC30ICzZzS6IUItNL_56dzZNrYIgnnLJ1052Mu_NzrwFOKQyjDOWCy9gNDMExadeKpnyZJYzHUR5nghb5XsXd3rhdT_q1-C06oUp9SGmCTf0DPu_RgfHhPTJl2ro8MUw9iiN5mDeeHtk-dTDVDsqYIndnMtQHgMh0zSqlGd9clJd-S0W1d-MT33DmbNo1YabyxV4rl60rDJ5bY8L0ZYfPzQc_zmSVViewFD3rJw3a1BTg3VYmhEn3IDWI7JeFzP7rrJCE9il6RbYazVyjyeJNjf2W5vQu7x4Ou94k40VPEkN4vEUTYViPtFaZULHTJmHa1wfVJEfCKayWAYkV2lImKYZYYyGKo2ZzwSJsoTmdAvqg7eB2gY3FkwTpNiJVqEhZyIkSiqDwXKqY4MuHDioTMyHpX4GL5WSCTfD5jhsBxpoe25iPgrXSqzwkQUPEuxzTRxoVp-ET_xrxAnyHMO1gtCBI2vbX-_O76_u8bjz1xP3YaHzdNvl3au7mwYsEux3sPW5TagX72O1a1BIIfbsbPsEfEnVfA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60gujBt1itGkFED2mT3WQ3OYpa6oNS1ELBw5J9gQi1aLz4693JQ60giKdc8trJTPb7Zme-BTikKmIZ19IPOc0cQQmonypufJVpbsNY60QWVb591htGV6N4VFVVYi9MqQ_xmXDDyCj-1xjgE207X6Khk0dH2OM0noW5iFGCHn1--ykdFfKk2JvLMR6HINM0roVnA9Kpr5yaihrPLqSmYOZ3sFrMNt1leKjfsywyeWq_5bKt3n9IOP5vICuwVIFQ77T0mlWYMeM1WPwmTbgOJ3fIeT3M63umkJnAHk0vx06rV--4SrN5LDjZgGH34v6s51fbKviKOrzjG5pKwwNircmkZdy4h1tcHTRxEEpuMqZCok0aEW5pRjinkUkZD7gkcZZQTTehMX4emy3wmOSWIMFOrIkcNZMRMco4BKapZQ5bNOGgtrCYlOoZotRJJsINW-Cwm7CDphduxkfZWoX1PSoXYYJdrkkTWvUXEVV0vQqCLMcxrTBqwlFh2l_vLgaXAzxu__XEfZgfnHfFzWX_egcWCDY7FMW5LWjkL29m10GQXO4VvvYBH9nUKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solar+cell+efficiency+tables+%28Version+60%29&rft.jtitle=Progress+in+photovoltaics&rft.au=Green%2C+Martin+A.&rft.au=Dunlop%2C+Ewan+D.&rft.au=Hohl%E2%80%90Ebinger%2C+Jochen&rft.au=Yoshita%2C+Masahiro&rft.date=2022-07-01&rft.pub=Wiley+Blackwell+%28John+Wiley+%26+Sons%29&rft.issn=1062-7995&rft.eissn=1099-159X&rft.volume=30&rft.issue=7&rft_id=info:doi/10.1002%2Fpip.3595&rft.externalDocID=1871348
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-7995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-7995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-7995&client=summon