Dissipativity-Based Consensus Tracking Control of Nonlinear Multiagent Systems With Generally Uncertain Markovian Switching Topologies and Event-Triggered Strategy

This article focuses on the dissipativity-based consensus tracking control (DBCTC) problems of time-varying delayed leader-following nonlinear multiagent systems (LFNMASs) with the event-triggered transmission strategy. The switching topologies of the LFNMASs are subject to the uncertain and partial...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 53; no. 8; pp. 4763 - 4778
Main Authors Wang, Junyi, Zhang, Huaguang, Fu, Jun, Liang, Hongjing, Meng, Qinggang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article focuses on the dissipativity-based consensus tracking control (DBCTC) problems of time-varying delayed leader-following nonlinear multiagent systems (LFNMASs) with the event-triggered transmission strategy. The switching topologies of the LFNMASs are subject to the uncertain and partially unknown generally Markovian jumping process. The control inputs of the following agents are updated according to the proposed event-triggered transmission strategy, which could reduce the communication burden. Based on the event-triggered transmission condition and distributed consensus protocol, some dissipativity-based criteria obtained by adopting the delay-product-term Lyapunov-Krasovskii functional (DPTLKF) and higher order polynomial-based relaxed inequality (HOPRII) are proposed to guarantee the LFNMAS consensus. The validity of the main results is verified by two simulation examples.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2022.3141599