Strain distributions and their influence on electronic structures of WSe2–MoS2 laterally strained heterojunctions
Monolayer transition metal dichalcogenide heterojunctions, including vertical and lateral p–n junctions, have attracted considerable attention due to their potential applications in electronics and optoelectronics. Lattice-misfit strain in atomically abrupt lateral heterojunctions, such as WSe 2 –Mo...
Saved in:
Published in | Nature nanotechnology Vol. 13; no. 2; pp. 152 - 158 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.02.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Monolayer transition metal dichalcogenide heterojunctions, including vertical and lateral p–n junctions, have attracted considerable attention due to their potential applications in electronics and optoelectronics. Lattice-misfit strain in atomically abrupt lateral heterojunctions, such as WSe
2
–MoS
2
, offers a new band-engineering strategy for tailoring their electronic properties. However, this approach requires an understanding of the strain distribution and its effect on band alignment. Here, we study a WSe
2
–MoS
2
lateral heterojunction using scanning tunnelling microscopy and image its moiré pattern to map the full two-dimensional strain tensor with high spatial resolution. Using scanning tunnelling spectroscopy, we measure both the strain and the band alignment of the WSe
2
–MoS
2
lateral heterojunction. We find that the misfit strain induces type II to type I band alignment transformation. Scanning transmission electron microscopy reveals the dislocations at the interface that partially relieve the strain. Finally, we observe a distinctive electronic structure at the interface due to hetero-bonding.
Mapping a moiré pattern in a lateral lattice-mismatched WSe
2
–MoS
2
heterojunction enables determination of the full strain tensor and the study of strain-induced electronic properties. |
---|---|
AbstractList | Monolayer transition metal dichalcogenide heterojunctions, including vertical and lateral p–n junctions, have attracted considerable attention due to their potential applications in electronics and optoelectronics. Lattice-misfit strain in atomically abrupt lateral heterojunctions, such as WSe
2
–MoS
2
, offers a new band-engineering strategy for tailoring their electronic properties. However, this approach requires an understanding of the strain distribution and its effect on band alignment. Here, we study a WSe
2
–MoS
2
lateral heterojunction using scanning tunnelling microscopy and image its moiré pattern to map the full two-dimensional strain tensor with high spatial resolution. Using scanning tunnelling spectroscopy, we measure both the strain and the band alignment of the WSe
2
–MoS
2
lateral heterojunction. We find that the misfit strain induces type II to type I band alignment transformation. Scanning transmission electron microscopy reveals the dislocations at the interface that partially relieve the strain. Finally, we observe a distinctive electronic structure at the interface due to hetero-bonding.
Mapping a moiré pattern in a lateral lattice-mismatched WSe
2
–MoS
2
heterojunction enables determination of the full strain tensor and the study of strain-induced electronic properties. Monolayer transition metal dichalcogenide heterojunctions, including vertical and lateral p–n junctions, have attracted considerable attention due to their potential applications in electronics and optoelectronics. Lattice-misfit strain in atomically abrupt lateral heterojunctions, such as WSe2–MoS2, offers a new band-engineering strategy for tailoring their electronic properties. However, this approach requires an understanding of the strain distribution and its effect on band alignment. Here, we study a WSe2–MoS2 lateral heterojunction using scanning tunnelling microscopy and image its moiré pattern to map the full two-dimensional strain tensor with high spatial resolution. Using scanning tunnelling spectroscopy, we measure both the strain and the band alignment of the WSe2–MoS2 lateral heterojunction. We find that the misfit strain induces type II to type I band alignment transformation. Scanning transmission electron microscopy reveals the dislocations at the interface that partially relieve the strain. Finally, we observe a distinctive electronic structure at the interface due to hetero-bonding. Monolayer transition metal dichalcogenide heterojunctions, including vertical and lateral p-n junctions, have attracted considerable attention due to their potential applications in electronics and optoelectronics. Lattice-misfit strain in atomically abrupt lateral heterojunctions, such as WSe2-MoS2, offers a new band-engineering strategy for tailoring their electronic properties. However, this approach requires an understanding of the strain distribution and its effect on band alignment. Here, we study a WSe2-MoS2 lateral heterojunction using scanning tunnelling microscopy and image its moiré pattern to map the full two-dimensional strain tensor with high spatial resolution. Using scanning tunnelling spectroscopy, we measure both the strain and the band alignment of the WSe2-MoS2 lateral heterojunction. We find that the misfit strain induces type II to type I band alignment transformation. Scanning transmission electron microscopy reveals the dislocations at the interface that partially relieve the strain. Finally, we observe a distinctive electronic structure at the interface due to hetero-bonding.Monolayer transition metal dichalcogenide heterojunctions, including vertical and lateral p-n junctions, have attracted considerable attention due to their potential applications in electronics and optoelectronics. Lattice-misfit strain in atomically abrupt lateral heterojunctions, such as WSe2-MoS2, offers a new band-engineering strategy for tailoring their electronic properties. However, this approach requires an understanding of the strain distribution and its effect on band alignment. Here, we study a WSe2-MoS2 lateral heterojunction using scanning tunnelling microscopy and image its moiré pattern to map the full two-dimensional strain tensor with high spatial resolution. Using scanning tunnelling spectroscopy, we measure both the strain and the band alignment of the WSe2-MoS2 lateral heterojunction. We find that the misfit strain induces type II to type I band alignment transformation. Scanning transmission electron microscopy reveals the dislocations at the interface that partially relieve the strain. Finally, we observe a distinctive electronic structure at the interface due to hetero-bonding. |
Author | Su, Yushan Li, Lain-Jong Zhang, Chendong Muller, David A. Shih, Chih-Kang Han, Yimo Li, Ming-Yang Tersoff, Jerry |
Author_xml | – sequence: 1 givenname: Chendong orcidid: 0000-0002-4960-7036 surname: Zhang fullname: Zhang, Chendong email: cdzhang@whu.edu.cn organization: Department of Physics, University of Texas at Austin, School of Physics and Technology, Wuhan University – sequence: 2 givenname: Ming-Yang surname: Li fullname: Li, Ming-Yang organization: Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Research Center for Applied Sciences, Academia Sinica – sequence: 3 givenname: Jerry surname: Tersoff fullname: Tersoff, Jerry organization: IBM Research Division, T. J. Watson Research Center – sequence: 4 givenname: Yimo surname: Han fullname: Han, Yimo organization: School of Applied and Engineering Physics, Cornell University – sequence: 5 givenname: Yushan surname: Su fullname: Su, Yushan organization: Department of Physics, University of Texas at Austin, School of the Gifted Young, University of Science and Technology of China – sequence: 6 givenname: Lain-Jong orcidid: 0000-0002-4059-7783 surname: Li fullname: Li, Lain-Jong organization: Physical Sciences and Engineering Division, King Abdullah University of Science and Technology – sequence: 7 givenname: David A. orcidid: 0000-0003-4129-0473 surname: Muller fullname: Muller, David A. organization: School of Applied and Engineering Physics, Cornell University, Kavli Institute at Cornell for Nanoscale Science, Cornell University – sequence: 8 givenname: Chih-Kang surname: Shih fullname: Shih, Chih-Kang email: shih@physics.utexas.edu organization: Department of Physics, University of Texas at Austin |
BookMark | eNp9kc1qHSEcxaWk0Hz0AboTuslmEnXG67gsIV-Q0MVN6VL8-E_jxWiiDiS7vEPesE9SJ7eUEmhXivzO8RzOHtqJKQJCnyg5oqQfj8tA-Yp3hIqOEMa6x3dol4ph7Ppe8p0_91F8QHulbAjhTLJhF5V1zdpH7Hyp2Zu5-hQL1tHhegs-Yx-nMEO0gFPEEMDWnKK3uNGzrXOGgtOEv6-B_Xx-uU5rhoOukHUITwvTrMHhW2hPaTNH-2p_gN5POhT4-PvcR9_OTm9OLrqrr-eXJ1-uOtsPsnaThFXvQBtnTGs3tsBcGLsCw-xgnAQgRBjBemGd04ZLB9zABNIJLXpC-310uPW9z-lhhlLVnS8WQtAR0lwUlaPkI6eMNfTzG3ST5hxbukbJYWg_cdIosaVsTqVkmJT1VS-dlqZBUaKWMdR2DNXGUMsY6rEp6RvlffZ3Oj_9V8O2mtLY-APyX5n-KfoF7lijHg |
CitedBy_id | crossref_primary_10_1039_C9CP04853G crossref_primary_10_1021_acsnano_0c06745 crossref_primary_10_1002_anie_202112367 crossref_primary_10_1002_chem_202002975 crossref_primary_10_1021_acsanm_2c05027 crossref_primary_10_1016_j_physe_2019_113714 crossref_primary_10_1021_acsaelm_8b00051 crossref_primary_10_1021_acsnano_0c00088 crossref_primary_10_1021_acs_nanolett_0c04204 crossref_primary_10_1088_1361_6633_ac11c4 crossref_primary_10_1016_j_commatsci_2022_111734 crossref_primary_10_1063_1_5053144 crossref_primary_10_1002_adma_202308007 crossref_primary_10_1038_s41467_019_10400_z crossref_primary_10_1039_D0NR02271C crossref_primary_10_1016_j_nanoen_2023_108278 crossref_primary_10_1038_s41467_019_11328_0 crossref_primary_10_1063_5_0079346 crossref_primary_10_1002_adma_202301067 crossref_primary_10_3390_nano12091542 crossref_primary_10_1039_D2NR01609E crossref_primary_10_1016_j_ssc_2019_113786 crossref_primary_10_1002_smtd_202401404 crossref_primary_10_1002_adma_202314242 crossref_primary_10_1039_D4TC00845F crossref_primary_10_1063_5_0037852 crossref_primary_10_1038_s41467_023_37889_9 crossref_primary_10_1039_D4NR03857F crossref_primary_10_1021_acsaelm_2c00567 crossref_primary_10_1007_s12274_022_5222_5 crossref_primary_10_1007_s12274_020_3188_8 crossref_primary_10_1002_adma_202411244 crossref_primary_10_1063_5_0073396 crossref_primary_10_1126_sciadv_abi6699 crossref_primary_10_1021_acsnano_4c12092 crossref_primary_10_1039_D3NR00429E crossref_primary_10_1039_C9CS00348G crossref_primary_10_1088_1361_6463_abd80c crossref_primary_10_1039_D2NR02189G crossref_primary_10_3390_nano12111929 crossref_primary_10_1088_1674_1056_acbaef crossref_primary_10_1002_adfm_202408870 crossref_primary_10_1002_andp_201800465 crossref_primary_10_1088_1361_6528_aad994 crossref_primary_10_1002_adma_201805417 crossref_primary_10_1016_j_carbon_2019_01_008 crossref_primary_10_1021_acsanm_4c00328 crossref_primary_10_1002_adfm_201706860 crossref_primary_10_1021_acs_chemrev_4c00174 crossref_primary_10_1088_2631_7990_ace501 crossref_primary_10_1088_1367_2630_ad3c65 crossref_primary_10_1002_adma_202404013 crossref_primary_10_1016_j_ccr_2023_215504 crossref_primary_10_1016_j_mseb_2024_117787 crossref_primary_10_1021_acsnano_2c09280 crossref_primary_10_1021_acsnano_4c06597 crossref_primary_10_1088_2053_1583_ad5737 crossref_primary_10_1002_smll_202402561 crossref_primary_10_1002_celc_201900224 crossref_primary_10_1002_aelm_202101144 crossref_primary_10_1364_OME_9_001620 crossref_primary_10_1007_s11467_022_1211_0 crossref_primary_10_1021_acsami_3c18332 crossref_primary_10_1002_batt_202300609 crossref_primary_10_1021_acsnano_2c05002 crossref_primary_10_1088_1361_6528_aae7df crossref_primary_10_1016_j_matchar_2024_114209 crossref_primary_10_1021_acsnano_8b09130 crossref_primary_10_1039_D2NR00216G crossref_primary_10_1002_adma_202005303 crossref_primary_10_1063_5_0252812 crossref_primary_10_1021_acsnano_8b07991 crossref_primary_10_1038_s42254_021_00389_0 crossref_primary_10_20517_cs_2023_34 crossref_primary_10_1063_1_5083133 crossref_primary_10_1063_5_0198494 crossref_primary_10_1002_adfm_202203602 crossref_primary_10_1039_D3CP03303A crossref_primary_10_1021_acsnano_2c11927 crossref_primary_10_1002_aelm_202300112 crossref_primary_10_1002_adfm_201908641 crossref_primary_10_1088_1361_648X_ab0970 crossref_primary_10_1002_adfm_202110846 crossref_primary_10_1002_jrs_5908 crossref_primary_10_1038_s41535_021_00360_3 crossref_primary_10_1016_j_carbon_2020_10_019 crossref_primary_10_1007_s40242_020_0200_5 crossref_primary_10_1088_2053_1583_ac351d crossref_primary_10_1021_acsnano_1c06012 crossref_primary_10_1002_adfm_202307893 crossref_primary_10_3390_biom11121756 crossref_primary_10_1002_advs_202500598 crossref_primary_10_1002_ange_202112367 crossref_primary_10_1021_acsnano_2c12903 crossref_primary_10_1007_s10909_022_02813_w crossref_primary_10_1016_j_isci_2021_103050 crossref_primary_10_1039_D0EE00450B crossref_primary_10_1002_advs_202105201 crossref_primary_10_1021_acsphotonics_4c00903 crossref_primary_10_1557_s43577_024_00837_z crossref_primary_10_1088_1361_6633_ad06db crossref_primary_10_1088_1674_1056_abca24 crossref_primary_10_1002_adom_201900815 crossref_primary_10_1021_acsanm_8b01963 crossref_primary_10_1021_acsnano_4c08081 crossref_primary_10_1103_PhysRevMaterials_3_044003 crossref_primary_10_1103_PhysRevB_102_075441 crossref_primary_10_1016_j_nanoen_2023_108550 crossref_primary_10_1088_1742_6596_2002_1_012053 crossref_primary_10_1088_1361_6528_ad1d78 crossref_primary_10_1021_acsnano_9b08186 crossref_primary_10_1063_5_0117436 crossref_primary_10_1021_acsami_9b07856 crossref_primary_10_1039_D3TA03441K crossref_primary_10_1103_PhysRevB_108_115303 crossref_primary_10_1002_smll_202300468 crossref_primary_10_1038_s41565_020_0721_6 crossref_primary_10_1002_inf2_12177 crossref_primary_10_1007_s12274_020_3228_4 crossref_primary_10_3390_nano12101706 crossref_primary_10_1016_j_cej_2020_127028 crossref_primary_10_1016_j_mseb_2024_117516 crossref_primary_10_1038_s41467_018_06940_5 crossref_primary_10_1038_s41467_019_11253_2 crossref_primary_10_1063_5_0104807 crossref_primary_10_1103_PhysRevB_106_075431 crossref_primary_10_1103_PhysRevB_108_075434 crossref_primary_10_1016_j_cossms_2020_100837 crossref_primary_10_1038_s41467_024_46087_0 crossref_primary_10_1063_5_0253709 crossref_primary_10_1063_1_5144535 crossref_primary_10_1103_PhysRevLett_129_036801 crossref_primary_10_1002_advs_202002211 crossref_primary_10_1021_acsomega_1c00457 crossref_primary_10_1007_s10338_018_0049_z crossref_primary_10_1021_acsnano_2c01890 crossref_primary_10_1038_s41535_021_00382_x crossref_primary_10_1002_adfm_201900040 crossref_primary_10_1038_s41699_021_00224_1 crossref_primary_10_1039_D0EE01370F crossref_primary_10_1016_j_mtphys_2020_100262 crossref_primary_10_1103_PhysRevB_109_045411 crossref_primary_10_1021_acsnano_1c06332 crossref_primary_10_1021_acsnano_0c03414 crossref_primary_10_1063_1_5053795 crossref_primary_10_1002_adom_202302900 crossref_primary_10_1016_j_nanoen_2021_106912 crossref_primary_10_1039_D2NA00912A crossref_primary_10_1109_TED_2023_3283374 crossref_primary_10_1038_s41524_019_0167_2 crossref_primary_10_1016_j_surfin_2024_105160 crossref_primary_10_1103_PhysRevMaterials_4_024002 crossref_primary_10_3390_molecules28135004 crossref_primary_10_1017_S1431927621002683 crossref_primary_10_1063_5_0254935 crossref_primary_10_1002_smll_202100655 crossref_primary_10_1038_s41565_022_01106_3 crossref_primary_10_1088_1361_6528_ab9b48 crossref_primary_10_1021_acsnano_0c06596 crossref_primary_10_1038_s41467_019_14207_w crossref_primary_10_1021_acsnano_1c05491 crossref_primary_10_1021_acsomega_9b04360 crossref_primary_10_1039_D3NR03017B crossref_primary_10_1021_acsami_5c00368 crossref_primary_10_1103_PhysRevB_100_035429 crossref_primary_10_1088_2399_6528_ac819d crossref_primary_10_1002_adfm_202402544 crossref_primary_10_1021_acs_nanolett_0c04408 crossref_primary_10_1021_jacs_1c04380 crossref_primary_10_1016_j_rinp_2023_106234 crossref_primary_10_1088_1361_6463_aaff47 crossref_primary_10_3762_bjnano_13_11 crossref_primary_10_1007_s12274_021_3648_9 crossref_primary_10_1021_acs_nanolett_4c01745 crossref_primary_10_1103_PhysRevB_103_L121102 crossref_primary_10_1063_5_0089639 crossref_primary_10_1039_D1CP04850C crossref_primary_10_1016_j_matdes_2018_09_032 crossref_primary_10_1039_D1CS01092A crossref_primary_10_1002_adma_201901077 crossref_primary_10_1016_j_nanoen_2023_108880 crossref_primary_10_1002_adma_201707627 crossref_primary_10_1021_acsaelm_0c00231 crossref_primary_10_26599_NR_2025_94907091 crossref_primary_10_1557_jmr_2020_34 crossref_primary_10_1103_PhysRevApplied_18_044020 crossref_primary_10_1016_j_commatsci_2023_112070 crossref_primary_10_1021_acsnano_9b03652 crossref_primary_10_1021_acsnano_3c01082 crossref_primary_10_1039_D2NH00318J crossref_primary_10_3390_app10082731 crossref_primary_10_1007_s12274_020_3253_3 crossref_primary_10_1007_s12274_020_2809_6 crossref_primary_10_1103_PhysRevB_97_085437 crossref_primary_10_1021_acs_chemmater_2c01176 crossref_primary_10_1016_j_apsusc_2024_162059 crossref_primary_10_1021_acsnano_0c04945 crossref_primary_10_1002_advs_202002458 crossref_primary_10_1021_acsnano_0c02885 crossref_primary_10_1038_s41563_020_0636_5 crossref_primary_10_1088_1361_648X_ad2bda crossref_primary_10_1017_S1431927620018784 crossref_primary_10_1134_S0036024424040277 crossref_primary_10_1002_aelm_202300523 crossref_primary_10_1063_5_0077669 crossref_primary_10_1002_adfm_202005449 crossref_primary_10_2139_ssrn_4097401 crossref_primary_10_1021_acscatal_4c04046 crossref_primary_10_1021_acsnano_4c10302 crossref_primary_10_1039_C8CP07786J crossref_primary_10_1103_PhysRevB_99_035107 crossref_primary_10_1103_PhysRevB_102_075413 crossref_primary_10_1002_adma_202307269 crossref_primary_10_1080_21663831_2022_2151852 crossref_primary_10_1103_PhysRevApplied_19_014039 crossref_primary_10_1088_1361_6463_ab622e |
Cites_doi | 10.1038/ncomms6246 10.1073/pnas.1405435111 10.1021/nl500515q 10.1021/nl4014748 10.1021/nl4013166 10.1038/nphoton.2015.282 10.1038/nnano.2014.222 10.1021/acs.nanolett.5b01968 10.1038/ncomms6403 10.1039/C5CS00507H 10.1038/nnano.2014.167 10.1126/science.aab4097 10.1038/nphoton.2012.285 10.1021/acs.nanolett.6b05228 10.1103/PhysRevLett.84.334 10.1021/nl903868w 10.1021/nn4024834 10.1126/sciadv.1601459 10.1103/PhysRevLett.105.136805 10.1063/1.4774090 10.1038/ncomms8381 10.1103/PhysRevB.85.033305 10.1063/1.4883995 10.1021/nl402875m 10.1126/sciadv.1601832 10.1038/nmat4064 10.1103/PhysRevB.87.081307 10.1103/PhysRevB.88.121301 10.1021/nn301320r 10.1038/ncomms8666 10.1103/PhysRevB.87.155304 10.1038/nmat4091 10.1039/C4CS00301B 10.1115/1.4012173 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 Copyright Nature Publishing Group Feb 2018 |
Copyright_xml | – notice: The Author(s) 2018 – notice: Copyright Nature Publishing Group Feb 2018 |
DBID | AAYXX CITATION 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 |
DOI | 10.1038/s41565-017-0022-x |
DatabaseName | CrossRef ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-3395 |
EndPage | 158 |
ExternalDocumentID | 10_1038_s41565_017_0022_x |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ACSTC ALPWD ATHPR CITATION PHGZM PHGZT 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PUEGO 7X8 |
ID | FETCH-LOGICAL-c349t-f9e63deabdbb415829257bc6eb2c4bd9ee007b7237cddab59de5befe9d7a73013 |
IEDL.DBID | 7X7 |
ISSN | 1748-3387 1748-3395 |
IngestDate | Fri Jul 11 08:10:59 EDT 2025 Sat Aug 23 14:29:30 EDT 2025 Tue Jul 01 01:56:28 EDT 2025 Thu Apr 24 22:51:38 EDT 2025 Fri Feb 21 02:40:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-f9e63deabdbb415829257bc6eb2c4bd9ee007b7237cddab59de5befe9d7a73013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4129-0473 0000-0002-4960-7036 0000-0002-4059-7783 |
PQID | 1994400750 |
PQPubID | 546299 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1989585122 proquest_journals_1994400750 crossref_citationtrail_10_1038_s41565_017_0022_x crossref_primary_10_1038_s41565_017_0022_x springer_journals_10_1038_s41565_017_0022_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nature Nanotech |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Johari, Shenoy (CR16) 2012; 6 Mak, Shan (CR5) 2016; 10 Feng, Qian, Huang, Li (CR21) 2012; 6 Zhu (CR23) 2013; 88 Fang (CR6) 2014; 111 Zhang (CR34) 2015; 15 Hong (CR8) 2014; 9 Cosma, Wallbank, Cheianov, Fal’ko (CR28) 2014; 173 Chiu (CR9) 2015; 6 Guzman, Strachan (CR33) 2014; 115 Conley (CR26) 2013; 13 Goodier (CR31) 1933; 55 He, Poole, Mak, Shan (CR22) 2013; 13 Liu, Tersoff, Baklenov, Holmes, Shih (CR27) 2000; 84 Castellanos-Gomez (CR25) 2013; 13 Kang, Tongay, Zhou, Li, Wu (CR32) 2013; 102 Yun, Han, Hong, Kim, Lee (CR15) 2012; 85 Li (CR17) 2015; 6 Splendiani (CR2) 2010; 10 Zhang (CR30) 2017; 3 Park (CR35) 2014; 5 Duan (CR13) 2014; 9 Li (CR14) 2015; 349 Huang (CR11) 2014; 13 Hui (CR20) 2013; 7 Wilson (CR10) 2017; 3 Gong (CR12) 2014; 13 Liu (CR19) 2014; 5 Liu, Xiao, Yao, Xu, Yao (CR4) 2015; 44 Jiang (CR29) 2017; 17 Duan, Wang, Pan, Yu, Duan (CR3) 2015; 44 Shi, Pan, Zhang, Yakobson (CR18) 2013; 87 Rice (CR24) 2013; 87 Mak, Lee, Hone, Shan, Heinz (CR1) 2010; 105 Tongay (CR7) 2014; 14 N Liu (22_CR27) 2000; 84 DM Guzman (22_CR33) 2014; 115 X Hong (22_CR8) 2014; 9 J Park (22_CR35) 2014; 5 Z Liu (22_CR19) 2014; 5 XD Duan (22_CR3) 2015; 44 NR Wilson (22_CR10) 2017; 3 A Castellanos-Gomez (22_CR25) 2013; 13 H Shi (22_CR18) 2013; 87 KF Mak (22_CR5) 2016; 10 C Huang (22_CR11) 2014; 13 KF Mak (22_CR1) 2010; 105 GB Liu (22_CR4) 2015; 44 H Li (22_CR17) 2015; 6 H Fang (22_CR6) 2014; 111 YY Hui (22_CR20) 2013; 7 J Feng (22_CR21) 2012; 6 YJ Gong (22_CR12) 2014; 13 J Kang (22_CR32) 2013; 102 X Duan (22_CR13) 2014; 9 CR Zhu (22_CR23) 2013; 88 JN Goodier (22_CR31) 1933; 55 S Tongay (22_CR7) 2014; 14 C Rice (22_CR24) 2013; 87 DA Cosma (22_CR28) 2014; 173 HJ Conley (22_CR26) 2013; 13 M-Y Li (22_CR14) 2015; 349 A Splendiani (22_CR2) 2010; 10 Y Jiang (22_CR29) 2017; 17 P Johari (22_CR16) 2012; 6 K He (22_CR22) 2013; 13 M-H Chiu (22_CR9) 2015; 6 C Zhang (22_CR30) 2017; 3 C Zhang (22_CR34) 2015; 15 WS Yun (22_CR15) 2012; 85 |
References_xml | – volume: 5 year: 2014 ident: CR19 article-title: Strain and structure heterogeneity in MoS atomic layers grown by chemical vapour deposition publication-title: Nat. Commun. doi: 10.1038/ncomms6246 – volume: 111 start-page: 6198 year: 2014 end-page: 6202 ident: CR6 article-title: Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1405435111 – volume: 14 start-page: 3185 year: 2014 end-page: 3190 ident: CR7 article-title: Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS and WS Monolayers publication-title: Nano Lett. doi: 10.1021/nl500515q – volume: 13 start-page: 3626 year: 2013 end-page: 3630 ident: CR26 article-title: Bandgap engineering of strained monolayer and bilayer MoS publication-title: Nano Lett. doi: 10.1021/nl4014748 – volume: 13 start-page: 2931 year: 2013 end-page: 2936 ident: CR22 article-title: Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS publication-title: Nano Lett. doi: 10.1021/nl4013166 – volume: 10 start-page: 216 year: 2016 end-page: 226 ident: CR5 article-title: Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides publication-title: Nat Photon. doi: 10.1038/nphoton.2015.282 – volume: 9 start-page: 1024 year: 2014 end-page: 1030 ident: CR13 article-title: Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions publication-title: Nat. Nanotech. doi: 10.1038/nnano.2014.222 – volume: 15 start-page: 6494 year: 2015 end-page: 6500 ident: CR34 article-title: Probing critical point energies of transition metal dichalcogenides: surprising indirect gap of single layer WSe publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01968 – volume: 5 year: 2014 ident: CR35 article-title: Spatially resolved one-dimensional boundary states in graphene–hexagonal boron nitride planar heterostructures publication-title: Nat. Commun. doi: 10.1038/ncomms6403 – volume: 44 start-page: 8859 year: 2015 end-page: 8876 ident: CR3 article-title: Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00507H – volume: 9 start-page: 682 year: 2014 end-page: 686 ident: CR8 article-title: Ultrafast charge transfer in atomically thin MoS /WS heterostructures publication-title: Nat. Nanotech. doi: 10.1038/nnano.2014.167 – volume: 349 start-page: 524 year: 2015 end-page: 528 ident: CR14 article-title: Epitaxial growth of a monolayer WSe -MoS lateral p-n junction with an atomically sharp interface publication-title: Science doi: 10.1126/science.aab4097 – volume: 6 start-page: 866 year: 2012 end-page: 872 ident: CR21 article-title: Strain-engineered artificial atom as a broad-spectrum solar energy funnel publication-title: Nat. Photon. doi: 10.1038/nphoton.2012.285 – volume: 17 start-page: 2839 year: 2017 end-page: 2843 ident: CR29 article-title: Visualizing strain-induced pseudomagnetic fields in graphene through an hBN magnifying glass publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b05228 – volume: 84 start-page: 334 year: 2000 end-page: 337 ident: CR27 article-title: Nonuniform composition profile in In Ga As alloy quantum dots publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.334 – volume: 10 start-page: 1271 year: 2010 end-page: 1275 ident: CR2 article-title: Emerging photoluminescence in monolayer MoS publication-title: Nano Lett. doi: 10.1021/nl903868w – volume: 7 start-page: 7126 year: 2013 end-page: 7131 ident: CR20 article-title: Exceptional tunability of band energy in a compressively strained trilayer MoS sheet publication-title: ACS Nano doi: 10.1021/nn4024834 – volume: 3 year: 2017 ident: CR30 article-title: Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS /WSe hetero-bilayers publication-title: Sci. Adv. doi: 10.1126/sciadv.1601459 – volume: 105 year: 2010 ident: CR1 article-title: Atomically thin MoS : A new direct-gap semiconductor publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.136805 – volume: 102 year: 2013 ident: CR32 article-title: Band offsets and heterostructures of two-dimensional semiconductors publication-title: Appl. Phys. Lett. doi: 10.1063/1.4774090 – volume: 6 year: 2015 ident: CR17 article-title: Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide publication-title: Nat. Commun. doi: 10.1038/ncomms8381 – volume: 85 year: 2012 ident: CR15 article-title: Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX semiconductors (M = Mo, W; X = S, Se, Te) publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.033305 – volume: 115 year: 2014 ident: CR33 article-title: Role of strain on electronic and mechanical response of semiconducting transition-metal dichalcogenide monolayers: An ab-initio study publication-title: J. Appl. Phys. doi: 10.1063/1.4883995 – volume: 13 start-page: 5361 year: 2013 end-page: 5366 ident: CR25 article-title: Local strain engineering in atomically thin MoS2 publication-title: Nano Lett. doi: 10.1021/nl402875m – volume: 3 year: 2017 ident: CR10 article-title: Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures publication-title: Sci. Adv. doi: 10.1126/sciadv.1601832 – volume: 173 start-page: 137 year: 2014 end-page: 143 ident: CR28 article-title: Moiré pattern as a magnifying glass for strain and dislocations in van der Waals heterostructures publication-title: Faraday Discuss. – volume: 13 start-page: 1096 year: 2014 end-page: 1101 ident: CR11 article-title: Lateral heterojunctions within monolayer MoSe –WSe semiconductors publication-title: Nat. Mater. doi: 10.1038/nmat4064 – volume: 87 year: 2013 ident: CR24 article-title: Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.081307 – volume: 88 year: 2013 ident: CR23 article-title: Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.121301 – volume: 6 start-page: 5449 year: 2012 end-page: 5456 ident: CR16 article-title: Tuning the electronic properties of semiconducting transitionmetal dichalcogenides by applying mechanical strains publication-title: ACS Nano doi: 10.1021/nn301320r – volume: 55 start-page: 39 year: 1933 end-page: 44 ident: CR31 article-title: Concentration of stress around spherical and cylindrical inclusions and flaws publication-title: J. appl. Mech. Trans. ASME – volume: 6 year: 2015 ident: CR9 article-title: Determination of band alignment in the single-layer MoS /WSe heterojunction publication-title: Nat. Commun. doi: 10.1038/ncomms8666 – volume: 87 year: 2013 ident: CR18 article-title: Quasiparticle band structures and optical properties of strained monolayer MoS and WS publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.155304 – volume: 13 start-page: 1135 year: 2014 end-page: 1142 ident: CR12 article-title: Vertical and in-plane heterostructures from WS /MoS monolayers publication-title: Nat. Mater. doi: 10.1038/nmat4091 – volume: 44 start-page: 2643 year: 2015 end-page: 2663 ident: CR4 article-title: Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00301B – volume: 6 year: 2015 ident: 22_CR17 publication-title: Nat. Commun. doi: 10.1038/ncomms8381 – volume: 10 start-page: 216 year: 2016 ident: 22_CR5 publication-title: Nat Photon. doi: 10.1038/nphoton.2015.282 – volume: 44 start-page: 2643 year: 2015 ident: 22_CR4 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00301B – volume: 87 year: 2013 ident: 22_CR24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.081307 – volume: 9 start-page: 1024 year: 2014 ident: 22_CR13 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2014.222 – volume: 87 year: 2013 ident: 22_CR18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.155304 – volume: 111 start-page: 6198 year: 2014 ident: 22_CR6 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1405435111 – volume: 173 start-page: 137 year: 2014 ident: 22_CR28 publication-title: Faraday Discuss. – volume: 13 start-page: 3626 year: 2013 ident: 22_CR26 publication-title: Nano Lett. doi: 10.1021/nl4014748 – volume: 3 year: 2017 ident: 22_CR10 publication-title: Sci. Adv. doi: 10.1126/sciadv.1601832 – volume: 102 year: 2013 ident: 22_CR32 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4774090 – volume: 115 year: 2014 ident: 22_CR33 publication-title: J. Appl. Phys. doi: 10.1063/1.4883995 – volume: 10 start-page: 1271 year: 2010 ident: 22_CR2 publication-title: Nano Lett. doi: 10.1021/nl903868w – volume: 13 start-page: 1096 year: 2014 ident: 22_CR11 publication-title: Nat. Mater. doi: 10.1038/nmat4064 – volume: 3 year: 2017 ident: 22_CR30 publication-title: Sci. Adv. doi: 10.1126/sciadv.1601459 – volume: 84 start-page: 334 year: 2000 ident: 22_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.334 – volume: 44 start-page: 8859 year: 2015 ident: 22_CR3 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00507H – volume: 7 start-page: 7126 year: 2013 ident: 22_CR20 publication-title: ACS Nano doi: 10.1021/nn4024834 – volume: 6 start-page: 5449 year: 2012 ident: 22_CR16 publication-title: ACS Nano doi: 10.1021/nn301320r – volume: 5 year: 2014 ident: 22_CR19 publication-title: Nat. Commun. doi: 10.1038/ncomms6246 – volume: 55 start-page: 39 year: 1933 ident: 22_CR31 publication-title: J. appl. Mech. Trans. ASME doi: 10.1115/1.4012173 – volume: 15 start-page: 6494 year: 2015 ident: 22_CR34 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01968 – volume: 13 start-page: 5361 year: 2013 ident: 22_CR25 publication-title: Nano Lett. doi: 10.1021/nl402875m – volume: 85 year: 2012 ident: 22_CR15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.033305 – volume: 17 start-page: 2839 year: 2017 ident: 22_CR29 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b05228 – volume: 13 start-page: 1135 year: 2014 ident: 22_CR12 publication-title: Nat. Mater. doi: 10.1038/nmat4091 – volume: 349 start-page: 524 year: 2015 ident: 22_CR14 publication-title: Science doi: 10.1126/science.aab4097 – volume: 105 year: 2010 ident: 22_CR1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.136805 – volume: 13 start-page: 2931 year: 2013 ident: 22_CR22 publication-title: Nano Lett. doi: 10.1021/nl4013166 – volume: 6 start-page: 866 year: 2012 ident: 22_CR21 publication-title: Nat. Photon. doi: 10.1038/nphoton.2012.285 – volume: 88 year: 2013 ident: 22_CR23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.121301 – volume: 5 year: 2014 ident: 22_CR35 publication-title: Nat. Commun. doi: 10.1038/ncomms6403 – volume: 6 year: 2015 ident: 22_CR9 publication-title: Nat. Commun. doi: 10.1038/ncomms8666 – volume: 14 start-page: 3185 year: 2014 ident: 22_CR7 publication-title: Nano Lett. doi: 10.1021/nl500515q – volume: 9 start-page: 682 year: 2014 ident: 22_CR8 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2014.167 |
SSID | ssj0052924 |
Score | 2.6336796 |
Snippet | Monolayer transition metal dichalcogenide heterojunctions, including vertical and lateral p–n junctions, have attracted considerable attention due to their... Monolayer transition metal dichalcogenide heterojunctions, including vertical and lateral p-n junctions, have attracted considerable attention due to their... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 152 |
SubjectTerms | 639/301/357/1018 639/925/930/328/968 Alignment Chemistry and Materials Science Dislocations Electronic properties Electronic structure Heterojunctions Materials Science Molybdenum disulfide Nanotechnology Nanotechnology and Microengineering Optoelectronics P-n junctions Scanning transmission electron microscopy Scanning tunneling microscopy Spatial discrimination Spatial resolution Spectroscopy Strain distribution Transmission electron microscopy |
Title | Strain distributions and their influence on electronic structures of WSe2–MoS2 laterally strained heterojunctions |
URI | https://link.springer.com/article/10.1038/s41565-017-0022-x https://www.proquest.com/docview/1994400750 https://www.proquest.com/docview/1989585122 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTtwwEB7xc4FDVSiILRS5EqciC0icxDkhqNiiSiDEgthbZHu8gmqVbBWQ4NZ36BvyJJ1xkl1AKpdc4tjJjO2Z8TeZD2CHnDYKuhKKVFM0UqlES01WVxryDqxH7TyGap_n6em1-jlMhu2BW92mVXZ7YtiosXJ8Rr7HNWxVMHCHk9-SWaMYXW0pNOZhkUuX8azOhtOAK4nyhtQ2U1pSKJZ1qGas92oOXDhtLZMhof3xtV2aOZtv8NFgdvof4UPrL4qjRsErMOfLVVh-UUXwE9SDwPMgkGvgtvRVtTAlioACiLuOh0RUpZjR3oimdOwDxduiGombgY-e__w9qwaRGBv-L3k8fuI21LVHcctpM9UvsoKh-zW47p9cfT-VLZeCdLHK7-Uo92mM3li0lj5dk2iSzLqUAmunLObek2xtFsWZQzQ2ydEn1o98jpnhTSBeh4WyKv0GCKcRRwFf9U45R3I_UEhuDak4T50xPdjvJFm4ttA4v-y4CIB3rItG-AUJv2DhF489-DZ9ZNJU2Xiv8VannqJdcHUxmx49-Dq9TUuF8Q9T-uqB2-icUdAo6sFup9YXXfxvwM_vD7gJS-RF6SaVewsWSHn-C3kq93Y7TEe66v6PbVg8Pjm_uPwH0z_q_Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOiF-xpYCR4AKyComTOAeEELBs6c9lW9GbsT1eQbVKitKK9sY78B48FE_CjBN3CxK99RxnHM2MPTP55gfgCTltFHQVFKmWaKVShZaarK605B24gNoHjN0-t8vJrvq4V-wtwa9UC8NplelOjBc1tp7_ka9xD1sVDdzrg2-Sp0YxuppGaPRqsRFOvlPI1r1af0fyfZpl4_c7bydymCogfa7qQzmrQ5ljsA6dI-uls5q01vmSQkyvHNYh0C6uyvLKI1pX1BgKF2ahxsrycciJ7iW4rHKy5FyZPv6Qbv6CSKm-AFNLCv2qhKLmeq3jQInT5CoZE-iP_7aDC-f2Hzw2mrnxDbg--KfiTa9QN2EpNLfg2pmuhbehm8a5EgK55-4wLqsTtkERUQfxNc09EW0jFmN2RN-q9ojie9HOxKdpyH7_-LnVTjMxt1wHPZ-f8BoiHVB84TSddp-sbiR_B3YvhMt3Yblpm3APhNeIs4jnBq-8f0k-oUJiPqlUXXprR_AicdL4obE5f-zcRIA916ZnviHmG2a-OR7Bs9NXDvquHuctXk3iMcMB78xCHUfw-PQxHU3GW2wT2iNeo2tGXbNsBM-TWM-Q-N-GK-dv-AiuTHa2Ns3m-vbGfbhKHpzu08hXYZkEGR6Ql3ToHkbVFPD5os_CHzKEKEI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrYTggMqfWGjBSHABWQuJkziHCgHtqqWwqlgqenP9F7VolRSlFe2t78Db8Dg8CTNO3C1I9NZznHE0P56ZfOMZgGcYtGHSlWGmmjvNhcgkl-h1ucbowHgnrXeh2-ck39gRH3az3QX4Fe_CUFllPBPDQe0aS__IR9TDVgQHN6r6sojttfGbw--cJkgR0hrHaXQqsuVPf2D61q5urqGsnyfJeP3L-w3eTxjgNhXlEa9Kn6fOa-OMQU8mkxI12Ngc000rjCu9xx1NkaSFdU6brHQ-M77ypSs0mUaKdK_BYkFZ0QAW361Ptj9HP5AhMdFdx5QcE8EiYqqpHLWUNlHRXMFDOf3J315xHur-g84Gpzdeglt9tMredup1GxZ8fQduXuhheBfaaZgywRx14O2HZ7VM144FDIIdxCkorKnZfOgO6xrXHmO2z5qKfZ365PfZz0_NNGEzTbeiZ7NTWoOkvWP7VLTTfEMfHMjfg50r4fN9GNRN7R8As9K5KqC73gprX2OEKBwGVahgZW61HsKryEll-zbn9LEzFeD2VKqO-QqZr4j56mQIL85fOex6fFy2eDmKR_Xm3qq5cg7h6fljNFRCX3Ttm2NaI0vCYJNkCC-jWC-Q-N-GDy_f8AlcRztQHzcnW4_gBoZzsqspX4YBytGvYMh0ZB73uslg76rN4Q-XqS3U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain+distributions+and+their+influence+on+electronic+structures+of+WSe2%E2%80%93MoS2+laterally+strained+heterojunctions&rft.jtitle=Nature+nanotechnology&rft.au=Zhang%2C+Chendong&rft.au=Ming-Yang%2C+Li&rft.au=Tersoff%2C+Jerry&rft.au=Han%2C+Yimo&rft.date=2018-02-01&rft.pub=Nature+Publishing+Group&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=13&rft.issue=2&rft.spage=152&rft.epage=158&rft_id=info:doi/10.1038%2Fs41565-017-0022-x&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |