Strain distributions and their influence on electronic structures of WSe2–MoS2 laterally strained heterojunctions

Monolayer transition metal dichalcogenide heterojunctions, including vertical and lateral p–n junctions, have attracted considerable attention due to their potential applications in electronics and optoelectronics. Lattice-misfit strain in atomically abrupt lateral heterojunctions, such as WSe 2 –Mo...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 13; no. 2; pp. 152 - 158
Main Authors Zhang, Chendong, Li, Ming-Yang, Tersoff, Jerry, Han, Yimo, Su, Yushan, Li, Lain-Jong, Muller, David A., Shih, Chih-Kang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.02.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Monolayer transition metal dichalcogenide heterojunctions, including vertical and lateral p–n junctions, have attracted considerable attention due to their potential applications in electronics and optoelectronics. Lattice-misfit strain in atomically abrupt lateral heterojunctions, such as WSe 2 –MoS 2 , offers a new band-engineering strategy for tailoring their electronic properties. However, this approach requires an understanding of the strain distribution and its effect on band alignment. Here, we study a WSe 2 –MoS 2 lateral heterojunction using scanning tunnelling microscopy and image its moiré pattern to map the full two-dimensional strain tensor with high spatial resolution. Using scanning tunnelling spectroscopy, we measure both the strain and the band alignment of the WSe 2 –MoS 2 lateral heterojunction. We find that the misfit strain induces type II to type I band alignment transformation. Scanning transmission electron microscopy reveals the dislocations at the interface that partially relieve the strain. Finally, we observe a distinctive electronic structure at the interface due to hetero-bonding. Mapping a moiré pattern in a lateral lattice-mismatched WSe 2 –MoS 2 heterojunction enables determination of the full strain tensor and the study of strain-induced electronic properties.
AbstractList Monolayer transition metal dichalcogenide heterojunctions, including vertical and lateral p–n junctions, have attracted considerable attention due to their potential applications in electronics and optoelectronics. Lattice-misfit strain in atomically abrupt lateral heterojunctions, such as WSe 2 –MoS 2 , offers a new band-engineering strategy for tailoring their electronic properties. However, this approach requires an understanding of the strain distribution and its effect on band alignment. Here, we study a WSe 2 –MoS 2 lateral heterojunction using scanning tunnelling microscopy and image its moiré pattern to map the full two-dimensional strain tensor with high spatial resolution. Using scanning tunnelling spectroscopy, we measure both the strain and the band alignment of the WSe 2 –MoS 2 lateral heterojunction. We find that the misfit strain induces type II to type I band alignment transformation. Scanning transmission electron microscopy reveals the dislocations at the interface that partially relieve the strain. Finally, we observe a distinctive electronic structure at the interface due to hetero-bonding. Mapping a moiré pattern in a lateral lattice-mismatched WSe 2 –MoS 2 heterojunction enables determination of the full strain tensor and the study of strain-induced electronic properties.
Monolayer transition metal dichalcogenide heterojunctions, including vertical and lateral p–n junctions, have attracted considerable attention due to their potential applications in electronics and optoelectronics. Lattice-misfit strain in atomically abrupt lateral heterojunctions, such as WSe2–MoS2, offers a new band-engineering strategy for tailoring their electronic properties. However, this approach requires an understanding of the strain distribution and its effect on band alignment. Here, we study a WSe2–MoS2 lateral heterojunction using scanning tunnelling microscopy and image its moiré pattern to map the full two-dimensional strain tensor with high spatial resolution. Using scanning tunnelling spectroscopy, we measure both the strain and the band alignment of the WSe2–MoS2 lateral heterojunction. We find that the misfit strain induces type II to type I band alignment transformation. Scanning transmission electron microscopy reveals the dislocations at the interface that partially relieve the strain. Finally, we observe a distinctive electronic structure at the interface due to hetero-bonding.
Monolayer transition metal dichalcogenide heterojunctions, including vertical and lateral p-n junctions, have attracted considerable attention due to their potential applications in electronics and optoelectronics. Lattice-misfit strain in atomically abrupt lateral heterojunctions, such as WSe2-MoS2, offers a new band-engineering strategy for tailoring their electronic properties. However, this approach requires an understanding of the strain distribution and its effect on band alignment. Here, we study a WSe2-MoS2 lateral heterojunction using scanning tunnelling microscopy and image its moiré pattern to map the full two-dimensional strain tensor with high spatial resolution. Using scanning tunnelling spectroscopy, we measure both the strain and the band alignment of the WSe2-MoS2 lateral heterojunction. We find that the misfit strain induces type II to type I band alignment transformation. Scanning transmission electron microscopy reveals the dislocations at the interface that partially relieve the strain. Finally, we observe a distinctive electronic structure at the interface due to hetero-bonding.Monolayer transition metal dichalcogenide heterojunctions, including vertical and lateral p-n junctions, have attracted considerable attention due to their potential applications in electronics and optoelectronics. Lattice-misfit strain in atomically abrupt lateral heterojunctions, such as WSe2-MoS2, offers a new band-engineering strategy for tailoring their electronic properties. However, this approach requires an understanding of the strain distribution and its effect on band alignment. Here, we study a WSe2-MoS2 lateral heterojunction using scanning tunnelling microscopy and image its moiré pattern to map the full two-dimensional strain tensor with high spatial resolution. Using scanning tunnelling spectroscopy, we measure both the strain and the band alignment of the WSe2-MoS2 lateral heterojunction. We find that the misfit strain induces type II to type I band alignment transformation. Scanning transmission electron microscopy reveals the dislocations at the interface that partially relieve the strain. Finally, we observe a distinctive electronic structure at the interface due to hetero-bonding.
Author Su, Yushan
Li, Lain-Jong
Zhang, Chendong
Muller, David A.
Shih, Chih-Kang
Han, Yimo
Li, Ming-Yang
Tersoff, Jerry
Author_xml – sequence: 1
  givenname: Chendong
  orcidid: 0000-0002-4960-7036
  surname: Zhang
  fullname: Zhang, Chendong
  email: cdzhang@whu.edu.cn
  organization: Department of Physics, University of Texas at Austin, School of Physics and Technology, Wuhan University
– sequence: 2
  givenname: Ming-Yang
  surname: Li
  fullname: Li, Ming-Yang
  organization: Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Research Center for Applied Sciences, Academia Sinica
– sequence: 3
  givenname: Jerry
  surname: Tersoff
  fullname: Tersoff, Jerry
  organization: IBM Research Division, T. J. Watson Research Center
– sequence: 4
  givenname: Yimo
  surname: Han
  fullname: Han, Yimo
  organization: School of Applied and Engineering Physics, Cornell University
– sequence: 5
  givenname: Yushan
  surname: Su
  fullname: Su, Yushan
  organization: Department of Physics, University of Texas at Austin, School of the Gifted Young, University of Science and Technology of China
– sequence: 6
  givenname: Lain-Jong
  orcidid: 0000-0002-4059-7783
  surname: Li
  fullname: Li, Lain-Jong
  organization: Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
– sequence: 7
  givenname: David A.
  orcidid: 0000-0003-4129-0473
  surname: Muller
  fullname: Muller, David A.
  organization: School of Applied and Engineering Physics, Cornell University, Kavli Institute at Cornell for Nanoscale Science, Cornell University
– sequence: 8
  givenname: Chih-Kang
  surname: Shih
  fullname: Shih, Chih-Kang
  email: shih@physics.utexas.edu
  organization: Department of Physics, University of Texas at Austin
BookMark eNp9kc1qHSEcxaWk0Hz0AboTuslmEnXG67gsIV-Q0MVN6VL8-E_jxWiiDiS7vEPesE9SJ7eUEmhXivzO8RzOHtqJKQJCnyg5oqQfj8tA-Yp3hIqOEMa6x3dol4ph7Ppe8p0_91F8QHulbAjhTLJhF5V1zdpH7Hyp2Zu5-hQL1tHhegs-Yx-nMEO0gFPEEMDWnKK3uNGzrXOGgtOEv6-B_Xx-uU5rhoOukHUITwvTrMHhW2hPaTNH-2p_gN5POhT4-PvcR9_OTm9OLrqrr-eXJ1-uOtsPsnaThFXvQBtnTGs3tsBcGLsCw-xgnAQgRBjBemGd04ZLB9zABNIJLXpC-310uPW9z-lhhlLVnS8WQtAR0lwUlaPkI6eMNfTzG3ST5hxbukbJYWg_cdIosaVsTqVkmJT1VS-dlqZBUaKWMdR2DNXGUMsY6rEp6RvlffZ3Oj_9V8O2mtLY-APyX5n-KfoF7lijHg
CitedBy_id crossref_primary_10_1039_C9CP04853G
crossref_primary_10_1021_acsnano_0c06745
crossref_primary_10_1002_anie_202112367
crossref_primary_10_1002_chem_202002975
crossref_primary_10_1021_acsanm_2c05027
crossref_primary_10_1016_j_physe_2019_113714
crossref_primary_10_1021_acsaelm_8b00051
crossref_primary_10_1021_acsnano_0c00088
crossref_primary_10_1021_acs_nanolett_0c04204
crossref_primary_10_1088_1361_6633_ac11c4
crossref_primary_10_1016_j_commatsci_2022_111734
crossref_primary_10_1063_1_5053144
crossref_primary_10_1002_adma_202308007
crossref_primary_10_1038_s41467_019_10400_z
crossref_primary_10_1039_D0NR02271C
crossref_primary_10_1016_j_nanoen_2023_108278
crossref_primary_10_1038_s41467_019_11328_0
crossref_primary_10_1063_5_0079346
crossref_primary_10_1002_adma_202301067
crossref_primary_10_3390_nano12091542
crossref_primary_10_1039_D2NR01609E
crossref_primary_10_1016_j_ssc_2019_113786
crossref_primary_10_1002_smtd_202401404
crossref_primary_10_1002_adma_202314242
crossref_primary_10_1039_D4TC00845F
crossref_primary_10_1063_5_0037852
crossref_primary_10_1038_s41467_023_37889_9
crossref_primary_10_1039_D4NR03857F
crossref_primary_10_1021_acsaelm_2c00567
crossref_primary_10_1007_s12274_022_5222_5
crossref_primary_10_1007_s12274_020_3188_8
crossref_primary_10_1002_adma_202411244
crossref_primary_10_1063_5_0073396
crossref_primary_10_1126_sciadv_abi6699
crossref_primary_10_1021_acsnano_4c12092
crossref_primary_10_1039_D3NR00429E
crossref_primary_10_1039_C9CS00348G
crossref_primary_10_1088_1361_6463_abd80c
crossref_primary_10_1039_D2NR02189G
crossref_primary_10_3390_nano12111929
crossref_primary_10_1088_1674_1056_acbaef
crossref_primary_10_1002_adfm_202408870
crossref_primary_10_1002_andp_201800465
crossref_primary_10_1088_1361_6528_aad994
crossref_primary_10_1002_adma_201805417
crossref_primary_10_1016_j_carbon_2019_01_008
crossref_primary_10_1021_acsanm_4c00328
crossref_primary_10_1002_adfm_201706860
crossref_primary_10_1021_acs_chemrev_4c00174
crossref_primary_10_1088_2631_7990_ace501
crossref_primary_10_1088_1367_2630_ad3c65
crossref_primary_10_1002_adma_202404013
crossref_primary_10_1016_j_ccr_2023_215504
crossref_primary_10_1016_j_mseb_2024_117787
crossref_primary_10_1021_acsnano_2c09280
crossref_primary_10_1021_acsnano_4c06597
crossref_primary_10_1088_2053_1583_ad5737
crossref_primary_10_1002_smll_202402561
crossref_primary_10_1002_celc_201900224
crossref_primary_10_1002_aelm_202101144
crossref_primary_10_1364_OME_9_001620
crossref_primary_10_1007_s11467_022_1211_0
crossref_primary_10_1021_acsami_3c18332
crossref_primary_10_1002_batt_202300609
crossref_primary_10_1021_acsnano_2c05002
crossref_primary_10_1088_1361_6528_aae7df
crossref_primary_10_1016_j_matchar_2024_114209
crossref_primary_10_1021_acsnano_8b09130
crossref_primary_10_1039_D2NR00216G
crossref_primary_10_1002_adma_202005303
crossref_primary_10_1063_5_0252812
crossref_primary_10_1021_acsnano_8b07991
crossref_primary_10_1038_s42254_021_00389_0
crossref_primary_10_20517_cs_2023_34
crossref_primary_10_1063_1_5083133
crossref_primary_10_1063_5_0198494
crossref_primary_10_1002_adfm_202203602
crossref_primary_10_1039_D3CP03303A
crossref_primary_10_1021_acsnano_2c11927
crossref_primary_10_1002_aelm_202300112
crossref_primary_10_1002_adfm_201908641
crossref_primary_10_1088_1361_648X_ab0970
crossref_primary_10_1002_adfm_202110846
crossref_primary_10_1002_jrs_5908
crossref_primary_10_1038_s41535_021_00360_3
crossref_primary_10_1016_j_carbon_2020_10_019
crossref_primary_10_1007_s40242_020_0200_5
crossref_primary_10_1088_2053_1583_ac351d
crossref_primary_10_1021_acsnano_1c06012
crossref_primary_10_1002_adfm_202307893
crossref_primary_10_3390_biom11121756
crossref_primary_10_1002_advs_202500598
crossref_primary_10_1002_ange_202112367
crossref_primary_10_1021_acsnano_2c12903
crossref_primary_10_1007_s10909_022_02813_w
crossref_primary_10_1016_j_isci_2021_103050
crossref_primary_10_1039_D0EE00450B
crossref_primary_10_1002_advs_202105201
crossref_primary_10_1021_acsphotonics_4c00903
crossref_primary_10_1557_s43577_024_00837_z
crossref_primary_10_1088_1361_6633_ad06db
crossref_primary_10_1088_1674_1056_abca24
crossref_primary_10_1002_adom_201900815
crossref_primary_10_1021_acsanm_8b01963
crossref_primary_10_1021_acsnano_4c08081
crossref_primary_10_1103_PhysRevMaterials_3_044003
crossref_primary_10_1103_PhysRevB_102_075441
crossref_primary_10_1016_j_nanoen_2023_108550
crossref_primary_10_1088_1742_6596_2002_1_012053
crossref_primary_10_1088_1361_6528_ad1d78
crossref_primary_10_1021_acsnano_9b08186
crossref_primary_10_1063_5_0117436
crossref_primary_10_1021_acsami_9b07856
crossref_primary_10_1039_D3TA03441K
crossref_primary_10_1103_PhysRevB_108_115303
crossref_primary_10_1002_smll_202300468
crossref_primary_10_1038_s41565_020_0721_6
crossref_primary_10_1002_inf2_12177
crossref_primary_10_1007_s12274_020_3228_4
crossref_primary_10_3390_nano12101706
crossref_primary_10_1016_j_cej_2020_127028
crossref_primary_10_1016_j_mseb_2024_117516
crossref_primary_10_1038_s41467_018_06940_5
crossref_primary_10_1038_s41467_019_11253_2
crossref_primary_10_1063_5_0104807
crossref_primary_10_1103_PhysRevB_106_075431
crossref_primary_10_1103_PhysRevB_108_075434
crossref_primary_10_1016_j_cossms_2020_100837
crossref_primary_10_1038_s41467_024_46087_0
crossref_primary_10_1063_5_0253709
crossref_primary_10_1063_1_5144535
crossref_primary_10_1103_PhysRevLett_129_036801
crossref_primary_10_1002_advs_202002211
crossref_primary_10_1021_acsomega_1c00457
crossref_primary_10_1007_s10338_018_0049_z
crossref_primary_10_1021_acsnano_2c01890
crossref_primary_10_1038_s41535_021_00382_x
crossref_primary_10_1002_adfm_201900040
crossref_primary_10_1038_s41699_021_00224_1
crossref_primary_10_1039_D0EE01370F
crossref_primary_10_1016_j_mtphys_2020_100262
crossref_primary_10_1103_PhysRevB_109_045411
crossref_primary_10_1021_acsnano_1c06332
crossref_primary_10_1021_acsnano_0c03414
crossref_primary_10_1063_1_5053795
crossref_primary_10_1002_adom_202302900
crossref_primary_10_1016_j_nanoen_2021_106912
crossref_primary_10_1039_D2NA00912A
crossref_primary_10_1109_TED_2023_3283374
crossref_primary_10_1038_s41524_019_0167_2
crossref_primary_10_1016_j_surfin_2024_105160
crossref_primary_10_1103_PhysRevMaterials_4_024002
crossref_primary_10_3390_molecules28135004
crossref_primary_10_1017_S1431927621002683
crossref_primary_10_1063_5_0254935
crossref_primary_10_1002_smll_202100655
crossref_primary_10_1038_s41565_022_01106_3
crossref_primary_10_1088_1361_6528_ab9b48
crossref_primary_10_1021_acsnano_0c06596
crossref_primary_10_1038_s41467_019_14207_w
crossref_primary_10_1021_acsnano_1c05491
crossref_primary_10_1021_acsomega_9b04360
crossref_primary_10_1039_D3NR03017B
crossref_primary_10_1021_acsami_5c00368
crossref_primary_10_1103_PhysRevB_100_035429
crossref_primary_10_1088_2399_6528_ac819d
crossref_primary_10_1002_adfm_202402544
crossref_primary_10_1021_acs_nanolett_0c04408
crossref_primary_10_1021_jacs_1c04380
crossref_primary_10_1016_j_rinp_2023_106234
crossref_primary_10_1088_1361_6463_aaff47
crossref_primary_10_3762_bjnano_13_11
crossref_primary_10_1007_s12274_021_3648_9
crossref_primary_10_1021_acs_nanolett_4c01745
crossref_primary_10_1103_PhysRevB_103_L121102
crossref_primary_10_1063_5_0089639
crossref_primary_10_1039_D1CP04850C
crossref_primary_10_1016_j_matdes_2018_09_032
crossref_primary_10_1039_D1CS01092A
crossref_primary_10_1002_adma_201901077
crossref_primary_10_1016_j_nanoen_2023_108880
crossref_primary_10_1002_adma_201707627
crossref_primary_10_1021_acsaelm_0c00231
crossref_primary_10_26599_NR_2025_94907091
crossref_primary_10_1557_jmr_2020_34
crossref_primary_10_1103_PhysRevApplied_18_044020
crossref_primary_10_1016_j_commatsci_2023_112070
crossref_primary_10_1021_acsnano_9b03652
crossref_primary_10_1021_acsnano_3c01082
crossref_primary_10_1039_D2NH00318J
crossref_primary_10_3390_app10082731
crossref_primary_10_1007_s12274_020_3253_3
crossref_primary_10_1007_s12274_020_2809_6
crossref_primary_10_1103_PhysRevB_97_085437
crossref_primary_10_1021_acs_chemmater_2c01176
crossref_primary_10_1016_j_apsusc_2024_162059
crossref_primary_10_1021_acsnano_0c04945
crossref_primary_10_1002_advs_202002458
crossref_primary_10_1021_acsnano_0c02885
crossref_primary_10_1038_s41563_020_0636_5
crossref_primary_10_1088_1361_648X_ad2bda
crossref_primary_10_1017_S1431927620018784
crossref_primary_10_1134_S0036024424040277
crossref_primary_10_1002_aelm_202300523
crossref_primary_10_1063_5_0077669
crossref_primary_10_1002_adfm_202005449
crossref_primary_10_2139_ssrn_4097401
crossref_primary_10_1021_acscatal_4c04046
crossref_primary_10_1021_acsnano_4c10302
crossref_primary_10_1039_C8CP07786J
crossref_primary_10_1103_PhysRevB_99_035107
crossref_primary_10_1103_PhysRevB_102_075413
crossref_primary_10_1002_adma_202307269
crossref_primary_10_1080_21663831_2022_2151852
crossref_primary_10_1103_PhysRevApplied_19_014039
crossref_primary_10_1088_1361_6463_ab622e
Cites_doi 10.1038/ncomms6246
10.1073/pnas.1405435111
10.1021/nl500515q
10.1021/nl4014748
10.1021/nl4013166
10.1038/nphoton.2015.282
10.1038/nnano.2014.222
10.1021/acs.nanolett.5b01968
10.1038/ncomms6403
10.1039/C5CS00507H
10.1038/nnano.2014.167
10.1126/science.aab4097
10.1038/nphoton.2012.285
10.1021/acs.nanolett.6b05228
10.1103/PhysRevLett.84.334
10.1021/nl903868w
10.1021/nn4024834
10.1126/sciadv.1601459
10.1103/PhysRevLett.105.136805
10.1063/1.4774090
10.1038/ncomms8381
10.1103/PhysRevB.85.033305
10.1063/1.4883995
10.1021/nl402875m
10.1126/sciadv.1601832
10.1038/nmat4064
10.1103/PhysRevB.87.081307
10.1103/PhysRevB.88.121301
10.1021/nn301320r
10.1038/ncomms8666
10.1103/PhysRevB.87.155304
10.1038/nmat4091
10.1039/C4CS00301B
10.1115/1.4012173
ContentType Journal Article
Copyright The Author(s) 2018
Copyright Nature Publishing Group Feb 2018
Copyright_xml – notice: The Author(s) 2018
– notice: Copyright Nature Publishing Group Feb 2018
DBID AAYXX
CITATION
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
DOI 10.1038/s41565-017-0022-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest Central Student
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 158
ExternalDocumentID 10_1038_s41565_017_0022_x
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ACSTC
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PUEGO
7X8
ID FETCH-LOGICAL-c349t-f9e63deabdbb415829257bc6eb2c4bd9ee007b7237cddab59de5befe9d7a73013
IEDL.DBID 7X7
ISSN 1748-3387
1748-3395
IngestDate Fri Jul 11 08:10:59 EDT 2025
Sat Aug 23 14:29:30 EDT 2025
Tue Jul 01 01:56:28 EDT 2025
Thu Apr 24 22:51:38 EDT 2025
Fri Feb 21 02:40:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-f9e63deabdbb415829257bc6eb2c4bd9ee007b7237cddab59de5befe9d7a73013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4129-0473
0000-0002-4960-7036
0000-0002-4059-7783
PQID 1994400750
PQPubID 546299
PageCount 7
ParticipantIDs proquest_miscellaneous_1989585122
proquest_journals_1994400750
crossref_citationtrail_10_1038_s41565_017_0022_x
crossref_primary_10_1038_s41565_017_0022_x
springer_journals_10_1038_s41565_017_0022_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nature Nanotech
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Johari, Shenoy (CR16) 2012; 6
Mak, Shan (CR5) 2016; 10
Feng, Qian, Huang, Li (CR21) 2012; 6
Zhu (CR23) 2013; 88
Fang (CR6) 2014; 111
Zhang (CR34) 2015; 15
Hong (CR8) 2014; 9
Cosma, Wallbank, Cheianov, Fal’ko (CR28) 2014; 173
Chiu (CR9) 2015; 6
Guzman, Strachan (CR33) 2014; 115
Conley (CR26) 2013; 13
Goodier (CR31) 1933; 55
He, Poole, Mak, Shan (CR22) 2013; 13
Liu, Tersoff, Baklenov, Holmes, Shih (CR27) 2000; 84
Castellanos-Gomez (CR25) 2013; 13
Kang, Tongay, Zhou, Li, Wu (CR32) 2013; 102
Yun, Han, Hong, Kim, Lee (CR15) 2012; 85
Li (CR17) 2015; 6
Splendiani (CR2) 2010; 10
Zhang (CR30) 2017; 3
Park (CR35) 2014; 5
Duan (CR13) 2014; 9
Li (CR14) 2015; 349
Huang (CR11) 2014; 13
Hui (CR20) 2013; 7
Wilson (CR10) 2017; 3
Gong (CR12) 2014; 13
Liu (CR19) 2014; 5
Liu, Xiao, Yao, Xu, Yao (CR4) 2015; 44
Jiang (CR29) 2017; 17
Duan, Wang, Pan, Yu, Duan (CR3) 2015; 44
Shi, Pan, Zhang, Yakobson (CR18) 2013; 87
Rice (CR24) 2013; 87
Mak, Lee, Hone, Shan, Heinz (CR1) 2010; 105
Tongay (CR7) 2014; 14
N Liu (22_CR27) 2000; 84
DM Guzman (22_CR33) 2014; 115
X Hong (22_CR8) 2014; 9
J Park (22_CR35) 2014; 5
Z Liu (22_CR19) 2014; 5
XD Duan (22_CR3) 2015; 44
NR Wilson (22_CR10) 2017; 3
A Castellanos-Gomez (22_CR25) 2013; 13
H Shi (22_CR18) 2013; 87
KF Mak (22_CR5) 2016; 10
C Huang (22_CR11) 2014; 13
KF Mak (22_CR1) 2010; 105
GB Liu (22_CR4) 2015; 44
H Li (22_CR17) 2015; 6
H Fang (22_CR6) 2014; 111
YY Hui (22_CR20) 2013; 7
J Feng (22_CR21) 2012; 6
YJ Gong (22_CR12) 2014; 13
J Kang (22_CR32) 2013; 102
X Duan (22_CR13) 2014; 9
CR Zhu (22_CR23) 2013; 88
JN Goodier (22_CR31) 1933; 55
S Tongay (22_CR7) 2014; 14
C Rice (22_CR24) 2013; 87
DA Cosma (22_CR28) 2014; 173
HJ Conley (22_CR26) 2013; 13
M-Y Li (22_CR14) 2015; 349
A Splendiani (22_CR2) 2010; 10
Y Jiang (22_CR29) 2017; 17
P Johari (22_CR16) 2012; 6
K He (22_CR22) 2013; 13
M-H Chiu (22_CR9) 2015; 6
C Zhang (22_CR30) 2017; 3
C Zhang (22_CR34) 2015; 15
WS Yun (22_CR15) 2012; 85
References_xml – volume: 5
  year: 2014
  ident: CR19
  article-title: Strain and structure heterogeneity in MoS atomic layers grown by chemical vapour deposition
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6246
– volume: 111
  start-page: 6198
  year: 2014
  end-page: 6202
  ident: CR6
  article-title: Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1405435111
– volume: 14
  start-page: 3185
  year: 2014
  end-page: 3190
  ident: CR7
  article-title: Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS and WS Monolayers
  publication-title: Nano Lett.
  doi: 10.1021/nl500515q
– volume: 13
  start-page: 3626
  year: 2013
  end-page: 3630
  ident: CR26
  article-title: Bandgap engineering of strained monolayer and bilayer MoS
  publication-title: Nano Lett.
  doi: 10.1021/nl4014748
– volume: 13
  start-page: 2931
  year: 2013
  end-page: 2936
  ident: CR22
  article-title: Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS
  publication-title: Nano Lett.
  doi: 10.1021/nl4013166
– volume: 10
  start-page: 216
  year: 2016
  end-page: 226
  ident: CR5
  article-title: Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides
  publication-title: Nat Photon.
  doi: 10.1038/nphoton.2015.282
– volume: 9
  start-page: 1024
  year: 2014
  end-page: 1030
  ident: CR13
  article-title: Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2014.222
– volume: 15
  start-page: 6494
  year: 2015
  end-page: 6500
  ident: CR34
  article-title: Probing critical point energies of transition metal dichalcogenides: surprising indirect gap of single layer WSe
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01968
– volume: 5
  year: 2014
  ident: CR35
  article-title: Spatially resolved one-dimensional boundary states in graphene–hexagonal boron nitride planar heterostructures
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6403
– volume: 44
  start-page: 8859
  year: 2015
  end-page: 8876
  ident: CR3
  article-title: Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00507H
– volume: 9
  start-page: 682
  year: 2014
  end-page: 686
  ident: CR8
  article-title: Ultrafast charge transfer in atomically thin MoS /WS heterostructures
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2014.167
– volume: 349
  start-page: 524
  year: 2015
  end-page: 528
  ident: CR14
  article-title: Epitaxial growth of a monolayer WSe -MoS lateral p-n junction with an atomically sharp interface
  publication-title: Science
  doi: 10.1126/science.aab4097
– volume: 6
  start-page: 866
  year: 2012
  end-page: 872
  ident: CR21
  article-title: Strain-engineered artificial atom as a broad-spectrum solar energy funnel
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2012.285
– volume: 17
  start-page: 2839
  year: 2017
  end-page: 2843
  ident: CR29
  article-title: Visualizing strain-induced pseudomagnetic fields in graphene through an hBN magnifying glass
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b05228
– volume: 84
  start-page: 334
  year: 2000
  end-page: 337
  ident: CR27
  article-title: Nonuniform composition profile in In Ga As alloy quantum dots
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.334
– volume: 10
  start-page: 1271
  year: 2010
  end-page: 1275
  ident: CR2
  article-title: Emerging photoluminescence in monolayer MoS
  publication-title: Nano Lett.
  doi: 10.1021/nl903868w
– volume: 7
  start-page: 7126
  year: 2013
  end-page: 7131
  ident: CR20
  article-title: Exceptional tunability of band energy in a compressively strained trilayer MoS sheet
  publication-title: ACS Nano
  doi: 10.1021/nn4024834
– volume: 3
  year: 2017
  ident: CR30
  article-title: Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS /WSe hetero-bilayers
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601459
– volume: 105
  year: 2010
  ident: CR1
  article-title: Atomically thin MoS : A new direct-gap semiconductor
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.136805
– volume: 102
  year: 2013
  ident: CR32
  article-title: Band offsets and heterostructures of two-dimensional semiconductors
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4774090
– volume: 6
  year: 2015
  ident: CR17
  article-title: Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8381
– volume: 85
  year: 2012
  ident: CR15
  article-title: Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX semiconductors (M = Mo, W; X = S, Se, Te)
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.033305
– volume: 115
  year: 2014
  ident: CR33
  article-title: Role of strain on electronic and mechanical response of semiconducting transition-metal dichalcogenide monolayers: An ab-initio study
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4883995
– volume: 13
  start-page: 5361
  year: 2013
  end-page: 5366
  ident: CR25
  article-title: Local strain engineering in atomically thin MoS2
  publication-title: Nano Lett.
  doi: 10.1021/nl402875m
– volume: 3
  year: 2017
  ident: CR10
  article-title: Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601832
– volume: 173
  start-page: 137
  year: 2014
  end-page: 143
  ident: CR28
  article-title: Moiré pattern as a magnifying glass for strain and dislocations in van der Waals heterostructures
  publication-title: Faraday Discuss.
– volume: 13
  start-page: 1096
  year: 2014
  end-page: 1101
  ident: CR11
  article-title: Lateral heterojunctions within monolayer MoSe –WSe semiconductors
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4064
– volume: 87
  year: 2013
  ident: CR24
  article-title: Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.081307
– volume: 88
  year: 2013
  ident: CR23
  article-title: Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.121301
– volume: 6
  start-page: 5449
  year: 2012
  end-page: 5456
  ident: CR16
  article-title: Tuning the electronic properties of semiconducting transitionmetal dichalcogenides by applying mechanical strains
  publication-title: ACS Nano
  doi: 10.1021/nn301320r
– volume: 55
  start-page: 39
  year: 1933
  end-page: 44
  ident: CR31
  article-title: Concentration of stress around spherical and cylindrical inclusions and flaws
  publication-title: J. appl. Mech. Trans. ASME
– volume: 6
  year: 2015
  ident: CR9
  article-title: Determination of band alignment in the single-layer MoS /WSe heterojunction
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8666
– volume: 87
  year: 2013
  ident: CR18
  article-title: Quasiparticle band structures and optical properties of strained monolayer MoS and WS
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.155304
– volume: 13
  start-page: 1135
  year: 2014
  end-page: 1142
  ident: CR12
  article-title: Vertical and in-plane heterostructures from WS /MoS monolayers
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4091
– volume: 44
  start-page: 2643
  year: 2015
  end-page: 2663
  ident: CR4
  article-title: Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00301B
– volume: 6
  year: 2015
  ident: 22_CR17
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8381
– volume: 10
  start-page: 216
  year: 2016
  ident: 22_CR5
  publication-title: Nat Photon.
  doi: 10.1038/nphoton.2015.282
– volume: 44
  start-page: 2643
  year: 2015
  ident: 22_CR4
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00301B
– volume: 87
  year: 2013
  ident: 22_CR24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.081307
– volume: 9
  start-page: 1024
  year: 2014
  ident: 22_CR13
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2014.222
– volume: 87
  year: 2013
  ident: 22_CR18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.155304
– volume: 111
  start-page: 6198
  year: 2014
  ident: 22_CR6
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1405435111
– volume: 173
  start-page: 137
  year: 2014
  ident: 22_CR28
  publication-title: Faraday Discuss.
– volume: 13
  start-page: 3626
  year: 2013
  ident: 22_CR26
  publication-title: Nano Lett.
  doi: 10.1021/nl4014748
– volume: 3
  year: 2017
  ident: 22_CR10
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601832
– volume: 102
  year: 2013
  ident: 22_CR32
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4774090
– volume: 115
  year: 2014
  ident: 22_CR33
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4883995
– volume: 10
  start-page: 1271
  year: 2010
  ident: 22_CR2
  publication-title: Nano Lett.
  doi: 10.1021/nl903868w
– volume: 13
  start-page: 1096
  year: 2014
  ident: 22_CR11
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4064
– volume: 3
  year: 2017
  ident: 22_CR30
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601459
– volume: 84
  start-page: 334
  year: 2000
  ident: 22_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.334
– volume: 44
  start-page: 8859
  year: 2015
  ident: 22_CR3
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00507H
– volume: 7
  start-page: 7126
  year: 2013
  ident: 22_CR20
  publication-title: ACS Nano
  doi: 10.1021/nn4024834
– volume: 6
  start-page: 5449
  year: 2012
  ident: 22_CR16
  publication-title: ACS Nano
  doi: 10.1021/nn301320r
– volume: 5
  year: 2014
  ident: 22_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6246
– volume: 55
  start-page: 39
  year: 1933
  ident: 22_CR31
  publication-title: J. appl. Mech. Trans. ASME
  doi: 10.1115/1.4012173
– volume: 15
  start-page: 6494
  year: 2015
  ident: 22_CR34
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01968
– volume: 13
  start-page: 5361
  year: 2013
  ident: 22_CR25
  publication-title: Nano Lett.
  doi: 10.1021/nl402875m
– volume: 85
  year: 2012
  ident: 22_CR15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.033305
– volume: 17
  start-page: 2839
  year: 2017
  ident: 22_CR29
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b05228
– volume: 13
  start-page: 1135
  year: 2014
  ident: 22_CR12
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4091
– volume: 349
  start-page: 524
  year: 2015
  ident: 22_CR14
  publication-title: Science
  doi: 10.1126/science.aab4097
– volume: 105
  year: 2010
  ident: 22_CR1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.136805
– volume: 13
  start-page: 2931
  year: 2013
  ident: 22_CR22
  publication-title: Nano Lett.
  doi: 10.1021/nl4013166
– volume: 6
  start-page: 866
  year: 2012
  ident: 22_CR21
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2012.285
– volume: 88
  year: 2013
  ident: 22_CR23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.121301
– volume: 5
  year: 2014
  ident: 22_CR35
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6403
– volume: 6
  year: 2015
  ident: 22_CR9
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8666
– volume: 14
  start-page: 3185
  year: 2014
  ident: 22_CR7
  publication-title: Nano Lett.
  doi: 10.1021/nl500515q
– volume: 9
  start-page: 682
  year: 2014
  ident: 22_CR8
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2014.167
SSID ssj0052924
Score 2.6336796
Snippet Monolayer transition metal dichalcogenide heterojunctions, including vertical and lateral p–n junctions, have attracted considerable attention due to their...
Monolayer transition metal dichalcogenide heterojunctions, including vertical and lateral p-n junctions, have attracted considerable attention due to their...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 152
SubjectTerms 639/301/357/1018
639/925/930/328/968
Alignment
Chemistry and Materials Science
Dislocations
Electronic properties
Electronic structure
Heterojunctions
Materials Science
Molybdenum disulfide
Nanotechnology
Nanotechnology and Microengineering
Optoelectronics
P-n junctions
Scanning transmission electron microscopy
Scanning tunneling microscopy
Spatial discrimination
Spatial resolution
Spectroscopy
Strain distribution
Transmission electron microscopy
Title Strain distributions and their influence on electronic structures of WSe2–MoS2 laterally strained heterojunctions
URI https://link.springer.com/article/10.1038/s41565-017-0022-x
https://www.proquest.com/docview/1994400750
https://www.proquest.com/docview/1989585122
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTtwwEB7xc4FDVSiILRS5EqciC0icxDkhqNiiSiDEgthbZHu8gmqVbBWQ4NZ36BvyJJ1xkl1AKpdc4tjJjO2Z8TeZD2CHnDYKuhKKVFM0UqlES01WVxryDqxH7TyGap_n6em1-jlMhu2BW92mVXZ7YtiosXJ8Rr7HNWxVMHCHk9-SWaMYXW0pNOZhkUuX8azOhtOAK4nyhtQ2U1pSKJZ1qGas92oOXDhtLZMhof3xtV2aOZtv8NFgdvof4UPrL4qjRsErMOfLVVh-UUXwE9SDwPMgkGvgtvRVtTAlioACiLuOh0RUpZjR3oimdOwDxduiGombgY-e__w9qwaRGBv-L3k8fuI21LVHcctpM9UvsoKh-zW47p9cfT-VLZeCdLHK7-Uo92mM3li0lj5dk2iSzLqUAmunLObek2xtFsWZQzQ2ydEn1o98jpnhTSBeh4WyKv0GCKcRRwFf9U45R3I_UEhuDak4T50xPdjvJFm4ttA4v-y4CIB3rItG-AUJv2DhF489-DZ9ZNJU2Xiv8VannqJdcHUxmx49-Dq9TUuF8Q9T-uqB2-icUdAo6sFup9YXXfxvwM_vD7gJS-RF6SaVewsWSHn-C3kq93Y7TEe66v6PbVg8Pjm_uPwH0z_q_Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOiF-xpYCR4AKyComTOAeEELBs6c9lW9GbsT1eQbVKitKK9sY78B48FE_CjBN3CxK99RxnHM2MPTP55gfgCTltFHQVFKmWaKVShZaarK605B24gNoHjN0-t8vJrvq4V-wtwa9UC8NplelOjBc1tp7_ka9xD1sVDdzrg2-Sp0YxuppGaPRqsRFOvlPI1r1af0fyfZpl4_c7bydymCogfa7qQzmrQ5ljsA6dI-uls5q01vmSQkyvHNYh0C6uyvLKI1pX1BgKF2ahxsrycciJ7iW4rHKy5FyZPv6Qbv6CSKm-AFNLCv2qhKLmeq3jQInT5CoZE-iP_7aDC-f2Hzw2mrnxDbg--KfiTa9QN2EpNLfg2pmuhbehm8a5EgK55-4wLqsTtkERUQfxNc09EW0jFmN2RN-q9ojie9HOxKdpyH7_-LnVTjMxt1wHPZ-f8BoiHVB84TSddp-sbiR_B3YvhMt3Yblpm3APhNeIs4jnBq-8f0k-oUJiPqlUXXprR_AicdL4obE5f-zcRIA916ZnviHmG2a-OR7Bs9NXDvquHuctXk3iMcMB78xCHUfw-PQxHU3GW2wT2iNeo2tGXbNsBM-TWM-Q-N-GK-dv-AiuTHa2Ns3m-vbGfbhKHpzu08hXYZkEGR6Ql3ToHkbVFPD5os_CHzKEKEI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrYTggMqfWGjBSHABWQuJkziHCgHtqqWwqlgqenP9F7VolRSlFe2t78Db8Dg8CTNO3C1I9NZznHE0P56ZfOMZgGcYtGHSlWGmmjvNhcgkl-h1ucbowHgnrXeh2-ck39gRH3az3QX4Fe_CUFllPBPDQe0aS__IR9TDVgQHN6r6sojttfGbw--cJkgR0hrHaXQqsuVPf2D61q5urqGsnyfJeP3L-w3eTxjgNhXlEa9Kn6fOa-OMQU8mkxI12Ngc000rjCu9xx1NkaSFdU6brHQ-M77ypSs0mUaKdK_BYkFZ0QAW361Ptj9HP5AhMdFdx5QcE8EiYqqpHLWUNlHRXMFDOf3J315xHur-g84Gpzdeglt9tMredup1GxZ8fQduXuhheBfaaZgywRx14O2HZ7VM144FDIIdxCkorKnZfOgO6xrXHmO2z5qKfZ365PfZz0_NNGEzTbeiZ7NTWoOkvWP7VLTTfEMfHMjfg50r4fN9GNRN7R8As9K5KqC73gprX2OEKBwGVahgZW61HsKryEll-zbn9LEzFeD2VKqO-QqZr4j56mQIL85fOex6fFy2eDmKR_Xm3qq5cg7h6fljNFRCX3Ttm2NaI0vCYJNkCC-jWC-Q-N-GDy_f8AlcRztQHzcnW4_gBoZzsqspX4YBytGvYMh0ZB73uslg76rN4Q-XqS3U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain+distributions+and+their+influence+on+electronic+structures+of+WSe2%E2%80%93MoS2+laterally+strained+heterojunctions&rft.jtitle=Nature+nanotechnology&rft.au=Zhang%2C+Chendong&rft.au=Ming-Yang%2C+Li&rft.au=Tersoff%2C+Jerry&rft.au=Han%2C+Yimo&rft.date=2018-02-01&rft.pub=Nature+Publishing+Group&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=13&rft.issue=2&rft.spage=152&rft.epage=158&rft_id=info:doi/10.1038%2Fs41565-017-0022-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon