Pointfilter: Point Cloud Filtering via Encoder-Decoder Modeling
Point cloud filtering is a fundamental problem in geometry modeling and processing. Despite of significant advancement in recent years, the existing methods still suffer from two issues: 1) they are either designed without preserving sharp features or less robust in feature preservation; and 2) they...
Saved in:
Published in | IEEE transactions on visualization and computer graphics Vol. 27; no. 3; pp. 2015 - 2027 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Point cloud filtering is a fundamental problem in geometry modeling and processing. Despite of significant advancement in recent years, the existing methods still suffer from two issues: 1) they are either designed without preserving sharp features or less robust in feature preservation; and 2) they usually have many parameters and require tedious parameter tuning. In this article, we propose a novel deep learning approach that automatically and robustly filters point clouds by removing noise and preserving their sharp features. Our point-wise learning architecture consists of an encoder and a decoder. The encoder directly takes points (a point and its neighbors) as input, and learns a latent representation vector which goes through the decoder to relate the ground-truth position with a displacement vector. The trained neural network can automatically generate a set of clean points from a noisy input. Extensive experiments show that our approach outperforms the state-of-the-art deep learning techniques in terms of both visual quality and quantitative error metrics. The source code and dataset can be found at https://github.com/dongbo-BUAA-VR/Pointfilter. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1077-2626 1941-0506 1941-0506 |
DOI: | 10.1109/TVCG.2020.3027069 |