A Phase Variable Approach for IMU-Based Locomotion Activity Recognition

Objective: This paper describes a gait classification method that utilizes measured motion of the thigh segment provided by an inertial measurement unit. Methods: The classification method employs a phase-variable description of gait, and identifies a given activity based on the expected curvature c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 65; no. 6; pp. 1330 - 1338
Main Authors Bartlett, Harrison L., Goldfarb, Michael
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Objective: This paper describes a gait classification method that utilizes measured motion of the thigh segment provided by an inertial measurement unit. Methods: The classification method employs a phase-variable description of gait, and identifies a given activity based on the expected curvature characteristics of that activity over a gait cycle. The classification method was tested in experiments conducted with seven healthy subjects performing three different locomotor activities: level ground walking, stair descent, and stair ascent. Classification accuracy of the phase variable classification method was assessed for classifying each activity, and transitions between activities, and compared to a linear discriminant analysis (LDA) classifier as a benchmark. Results: For the subjects tested, the phase variable classification method outperformed LDA when using nonsubject-specific training data, while the LDA outperformed the phase variable approach when using subject-specific training. Conclusions: The proposed method may provide improved classification accuracy for gait classification applications trained with nonsubject-specific data. Significance: This paper offers a new method of gait classification based on a phase variable description. The method is shown to provide improved classification accuracy relative to an LDA pattern recognition framework when trained with nonsubject-specific data.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0018-9294
1558-2531
1558-2531
DOI:10.1109/TBME.2017.2750139