Adaptive Synchronization of Reaction-Diffusion Neural Networks and Its Application to Secure Communication
This paper is mainly concerned with the synchronization problem of reaction-diffusion neural networks (RDNNs) with delays and its direct application in image secure communications. An adaptive control is designed without a sign function in which the controller gain matrix is a function of time. The...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 50; no. 3; pp. 911 - 922 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper is mainly concerned with the synchronization problem of reaction-diffusion neural networks (RDNNs) with delays and its direct application in image secure communications. An adaptive control is designed without a sign function in which the controller gain matrix is a function of time. The synchronization criteria are established for an error model derived from master-slave models through solving the set of linear matrix inequalities derived by constructing the suitable novel Lyapunov-Krasovskii functional candidate, Green's formula, and Wirtinger's inequality. If the proposed sufficient conditions are satisfied, then the global asymptotic synchronization of the error model is guaranteed. The numerical illustrations are provided to demonstrate the validity of the derived synchronization criteria. In addition, the role of system parameters is picturized through the chaotic nature of RDNNs and those unprecedented solutions is utilized to promote better security of image transactions. As is evident, the enhancement of image encryption algorithm is designed with two levels, namely, image watermarking and diffusion process. The contributions of this paper are discussed as concluding remarks. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2168-2267 2168-2275 2168-2275 |
DOI: | 10.1109/TCYB.2018.2877410 |