Fixed-Time Leader-Follower Output Feedback Consensus for Second-Order Multiagent Systems
This paper addresses the fixed-time leader-follower consensus problem for second-order multiagent systems without velocity measurement. A new continuous fixed-time distributed observer-based consensus protocol is developed to achieve consensus in a bounded finite time fully independent of initial co...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 49; no. 4; pp. 1545 - 1550 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper addresses the fixed-time leader-follower consensus problem for second-order multiagent systems without velocity measurement. A new continuous fixed-time distributed observer-based consensus protocol is developed to achieve consensus in a bounded finite time fully independent of initial condition. A rigorous stability proof of the multiagent systems by output feedback control is presented based on the bi-limit homogeneity and the Lyapunov technique. Finally, the efficiency of the proposed methodology is illustrated by numerical simulation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2168-2267 2168-2275 2168-2275 |
DOI: | 10.1109/TCYB.2018.2794759 |