Distributed Adaptive Event-Triggered Fault-Tolerant Consensus of Multiagent Systems With General Linear Dynamics

In this paper, the distributed adaptive event-triggered fault-tolerant consensus of general linear multiagent systems (MASs) is considered. First, in order to deal with multiplicative fault, a distributed event-triggered consensus protocol is designed. Using distributed adaptive online updating stra...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 49; no. 3; pp. 757 - 767
Main Authors Ye, Dan, Chen, Meng-Meng, Yang, Hai-Jiao
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, the distributed adaptive event-triggered fault-tolerant consensus of general linear multiagent systems (MASs) is considered. First, in order to deal with multiplicative fault, a distributed event-triggered consensus protocol is designed. Using distributed adaptive online updating strategies, the computation of the minimum eigenvalue of Laplacian matrix is avoided. Second, some adaptive parameters are introduced in trigger function to improve the self-regulation ability of event-triggered mechanism. The new trigger threshold is both state-dependent and time-dependent, which is independent of the number of agents. Then sufficient conditions are derived to guarantee the leaderless and leader-following consensus. On the basis of this, the results are extended to the case of actuator saturation. It is proved the Zeno-behavior of considered event-triggered mechanism is avoided. At last, the effectiveness of the proposed methods are demonstrated by three simulation examples.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2017.2782731