Difficulty control for blockchain-based consensus systems
Crypto-currencies like Bitcoin have recently attracted a lot of interest. A crucial ingredient into such systems is the “mining” of a Nakamoto blockchain. We model mining as a Poisson process with time-dependent intensity and use this model to derive predictions about block times for various hash-ra...
Saved in:
Published in | Peer-to-peer networking and applications Vol. 9; no. 2; pp. 397 - 413 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Crypto-currencies like Bitcoin have recently attracted a lot of interest. A crucial ingredient into such systems is the “mining” of a Nakamoto blockchain. We model mining as a Poisson process with time-dependent intensity and use this model to derive predictions about block times for various hash-rate scenarios (exponentially rising hash rate being the most important). We also analyse Bitcoin’s method to update the “network difficulty” as a mechanism to keep block times stable. Since it yields systematically too fast blocks for exponential hash-rate growth, we propose a new method to update difficulty. Our proposed method performs much better at ensuring stable average block times over longer periods of time, which we verify both in simulations of artificial growth scenarios and with real-world data. Besides Bitcoin itself, this has practical benefits particularly for systems like Namecoin. It can be used to make name expiration times more predictable, preventing accidental loss of names. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1936-6442 1936-6450 |
DOI: | 10.1007/s12083-015-0347-x |