A Clustering-Based Adaptive Evolutionary Algorithm for Multiobjective Optimization With Irregular Pareto Fronts
Existing multiobjective evolutionary algorithms (MOEAs) perform well on multiobjective optimization problems (MOPs) with regular Pareto fronts in which the Pareto optimal solutions distribute continuously over the objective space. When the Pareto front is discontinuous or degenerated, most existing...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 49; no. 7; pp. 2758 - 2770 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Existing multiobjective evolutionary algorithms (MOEAs) perform well on multiobjective optimization problems (MOPs) with regular Pareto fronts in which the Pareto optimal solutions distribute continuously over the objective space. When the Pareto front is discontinuous or degenerated, most existing algorithms cannot achieve good results. To remedy this issue, a clustering-based adaptive MOEA (CA-MOEA) is proposed in this paper for solving MOPs with irregular Pareto fronts. The main idea is to adaptively generate a set of cluster centers for guiding selection at each generation to maintain diversity and accelerate convergence. We investigate the performance of CA-MOEA on 18 widely used benchmark problems. Our results demonstrate the competitiveness of CA-MOEA for multiobjective optimization, especially for problems with irregular Pareto fronts. In addition, CA-MOEA is shown to perform well on the optimization of the stretching parameters in the carbon fiber formation process. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2168-2267 2168-2275 2168-2275 |
DOI: | 10.1109/TCYB.2018.2834466 |