Cost-Effective Kernel Ridge Regression Implementation for Keystroke-Based Active Authentication System
In this paper, a fast kernel ridge regression (KRR) learning algorithm is adopted with O(N) training cost for largescale active authentication system. A truncated Gaussian radial basis function (TRBF) kernel is also implemented to provide better cost-performance tradeoff. The fast-KRR algorithm alon...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 47; no. 11; pp. 3916 - 3927 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, a fast kernel ridge regression (KRR) learning algorithm is adopted with O(N) training cost for largescale active authentication system. A truncated Gaussian radial basis function (TRBF) kernel is also implemented to provide better cost-performance tradeoff. The fast-KRR algorithm along with the TRBF kernel offers computational advantages over the traditional support vector machine (SVM) with Gaussian-RBF kernel while preserving the error rate performance. Experimental results validate the cost-effectiveness of the developed authentication system. In numbers, the fast-KRR learning model achieves an equal error rate (EER) of 1.39% with O(N) training time, while SVM with the RBF kernel shows an EER of 1.41% with O(N 2 ) training time. |
---|---|
AbstractList | In this paper, a fast kernel ridge regression (KRR) learning algorithm is adopted with O(N) training cost for largescale active authentication system. A truncated Gaussian radial basis function (TRBF) kernel is also implemented to provide better cost-performance tradeoff. The fast-KRR algorithm along with the TRBF kernel offers computational advantages over the traditional support vector machine (SVM) with Gaussian-RBF kernel while preserving the error rate performance. Experimental results validate the cost-effectiveness of the developed authentication system. In numbers, the fast-KRR learning model achieves an equal error rate (EER) of 1.39% with O(N) training time, while SVM with the RBF kernel shows an EER of 1.41% with O(N 2 ) training time. In this paper, a fast kernel ridge regression (KRR) learning algorithm is adopted with ( ) training cost for large-scale active authentication system. A truncated Gaussian radial basis function (TRBF) kernel is also implemented to provide better cost-performance tradeoff. The fast-KRR algorithm along with the TRBF kernel offers computational advantages over the traditional support vector machine (SVM) with Gaussian-RBF kernel while preserving the error rate performance. Experimental results validate the cost-effectiveness of the developed authentication system. In numbers, the fast-KRR learning model achieves an equal error rate (EER) of 1.39% with ( ) training time, while SVM with the RBF kernel shows an EER of 1.41% with ( ) training time. In this paper, a fast kernel ridge regression (KRR) learning algorithm is adopted with O(N) training cost for largescale active authentication system. A truncated Gaussian radial basis function (TRBF) kernel is also implemented to provide better cost-performance tradeoff. The fast-KRR algorithm along with the TRBF kernel offers computational advantages over the traditional support vector machine (SVM) with Gaussian-RBF kernel while preserving the error rate performance. Experimental results validate the cost-effectiveness of the developed authentication system. In numbers, the fast-KRR learning model achieves an equal error rate (EER) of 1.39% with O(N) training time, while SVM with the RBF kernel shows an EER of 1.41% with O(N2) training time. |
Author | Chi-Chen Fang Sun-Yuan Kung Chang, Jien Morris Pei-Yuan Wu |
Author_xml | – sequence: 1 surname: Pei-Yuan Wu fullname: Pei-Yuan Wu email: peiyuanwu1987@gmail.com organization: Dept. of Electr. Eng., Princeton Univ., Princeton, NJ, USA – sequence: 2 surname: Chi-Chen Fang fullname: Chi-Chen Fang email: cfang@iastate.edu organization: Dept. of Electr. & Comput. Eng., Iowa State Univ., Ames, IA, USA – sequence: 3 givenname: Jien Morris surname: Chang fullname: Chang, Jien Morris organization: Dept. of Electr. & Comput. Eng., Iowa State Univ., Ames, IA, USA – sequence: 4 surname: Sun-Yuan Kung fullname: Sun-Yuan Kung organization: Dept. of ECE, Princeton Univ., Princeton, NJ, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27529880$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1L5TAUhoMo48f4A0SQwmzc9E6SpmmyvF78QkFwnMWsQtqeaLRtrkk64L83pVcXLjybnBOe9-Vw3n20PbgBEDoieEEIlr8fVv_OFhQTvqClxKyiW2iPEi5ySqty-7Pn1S46DOEZpxLpS4ofaDcRVAqB95BZuRDzc2OgifY_ZDfgB-iye9s-QnYPjx5CsG7Irvt1Bz0MUcdpNM4n9C1E714gP9MB2mw5OyzH-JQ428zknwRB_xPtGN0FONy8B-jvxfnD6iq_vbu8Xi1v86ZgMubAmKkZa3RFNaaGm7LGRLIKMGVSSMpJXUtZFBQEAS3KQteSS8OFFnXbQlMcoNPZd-3d6wghqt6GBrpOD-DGoIgoZUVKwUhCf31Bn93oh7SdoqRijBPJJ-pkQ411D61ae9tr_6Y-LpiAagYa70LwYFRj5yNFr22nCFZTXGqKS01xqU1cSUm-KD_Mv9MczxoLAJ_8tAthvHgHB0Cfkg |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1145_3465171 crossref_primary_10_1016_j_compscitech_2021_109186 crossref_primary_10_1016_j_neucom_2022_03_042 crossref_primary_10_1145_3485060 crossref_primary_10_1109_ACCESS_2018_2841347 crossref_primary_10_1002_bkcs_12776 crossref_primary_10_1088_1674_1137_ac6154 crossref_primary_10_1088_1674_1137_acc791 crossref_primary_10_1109_TCYB_2021_3071665 crossref_primary_10_3233_KES_190414 crossref_primary_10_1145_3397179 crossref_primary_10_1007_s12652_021_03301_x crossref_primary_10_1016_j_patcog_2020_107587 crossref_primary_10_1109_TAP_2019_2911645 crossref_primary_10_1007_s42979_021_00840_0 crossref_primary_10_1016_j_ress_2021_108018 crossref_primary_10_1103_PhysRevC_101_051301 crossref_primary_10_1177_00219983221127400 crossref_primary_10_1007_s12559_019_09705_4 crossref_primary_10_1109_TCSS_2024_3414587 crossref_primary_10_1109_JIOT_2021_3107581 crossref_primary_10_1109_TETCI_2024_3485677 crossref_primary_10_51847_tsW1aBTPdk crossref_primary_10_1109_ACCESS_2019_2936034 crossref_primary_10_1016_j_compbiomed_2023_107818 crossref_primary_10_1016_j_sigpro_2022_108559 crossref_primary_10_1109_TAP_2018_2872161 crossref_primary_10_1007_s41365_024_01379_4 crossref_primary_10_1016_j_neucom_2021_09_046 crossref_primary_10_1016_j_aeue_2022_154239 crossref_primary_10_1016_j_asoc_2024_112469 crossref_primary_10_1109_ACCESS_2020_3019467 crossref_primary_10_1007_s40831_025_01027_0 crossref_primary_10_1016_j_ins_2017_10_044 crossref_primary_10_1109_TCYB_2019_2901248 |
Cites_doi | 10.1145/75577.75582 10.1109/TSP.2004.830985 10.1109/TSMCB.2010.2044040 10.1109/ICC.2008.301 10.1145/502512.502540 10.1109/TIFS.2010.2075927 10.1145/1029208.1029210 10.1007/s10287-005-0003-7 10.1109/TSP.2008.2009895 10.2307/1267351 10.1162/neco.1995.7.2.219 10.1007/978-3-540-74549-5_62 10.1109/PACCS.2011.5990168 10.1109/CSICC.2009.5349640 10.1109/TSMCB.2009.2032926 10.1613/jair.953 10.1109/TSMCC.2008.2001696 10.1109/TSMCB.2009.2015426 10.1145/1007730.1007735 10.1109/TSMCB.2012.2200675 10.1109/TAES.1986.310699 10.1109/MITP.2013.52 10.1145/322796.322806 10.1109/TSMCB.2010.2045371 10.1109/DSN.2009.5270346 10.1109/CVPRW.2006.115 10.1109/TSMCB.2009.2031091 10.1007/3-540-48412-4_32 10.1109/MSP.2004.89 10.1162/089976698300017467 10.1109/TSMCB.2005.846648 10.1109/3477.558812 10.1109/TPAMI.2007.1010 10.1109/TNN.2006.873281 10.1109/ICASSP.2012.6288316 10.1017/CBO9781139176224 10.1145/266420.266434 10.1109/TPAMI.2011.153 10.1109/TCYB.2013.2257745 10.1109/TSMCB.2012.2183635 10.1007/978-1-4757-2440-0 10.1109/TSP.2007.907881 10.1145/581271.581272 10.1145/1961189.1961199 10.1109/ICASSP.2014.6854761 10.1109/TSMCB.2011.2155648 10.1145/1007730.1007734 10.1109/ECTICON.2009.5137142 10.1109/TCSVT.2003.818350 10.1109/TSP.2004.830991 10.1145/1085126.1085129 10.1109/IJCB.2011.6117552 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2016.2590472 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Aerospace Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 3927 |
ExternalDocumentID | 27529880 10_1109_TCYB_2016_2590472 7529146 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Active Authentication Program of Defense Advanced Research Projects Agency grantid: FA8750-12-2-0200 funderid: 10.13039/100000185 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c349t-e44fb44ca72a02f6f5b01947e024989261bb99332e81ea853ab969f68a8bddec3 |
IEDL.DBID | RIE |
ISSN | 2168-2267 |
IngestDate | Fri Jul 11 12:06:16 EDT 2025 Mon Jun 30 03:59:00 EDT 2025 Thu Jan 02 23:09:09 EST 2025 Tue Jul 01 04:35:07 EDT 2025 Thu Apr 24 23:06:23 EDT 2025 Tue Aug 26 16:38:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-e44fb44ca72a02f6f5b01947e024989261bb99332e81ea853ab969f68a8bddec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7860-3678 |
PMID | 27529880 |
PQID | 2174461961 |
PQPubID | 85422 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1859715841 proquest_journals_2174461961 ieee_primary_7529146 pubmed_primary_27529880 crossref_citationtrail_10_1109_TCYB_2016_2590472 crossref_primary_10_1109_TCYB_2016_2590472 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-01 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 lu (ref8) 2010; 40 ref59 ref15 ref14 ref53 ref55 ref54 chawla (ref58) 2002; 16 ref16 saunders (ref52) 1998 ref19 ref18 ref51 ref50 alsultan (ref33) 2013; 10 ref46 ref45 curtin (ref40) 2006 ref47 ref42 tikhonov (ref26) 1943; 39 ref41 ref43 park (ref38) 2010; 1 frieß (ref48) 1999 spillane (ref17) 1975; 17 duda (ref22) 2001 zuo (ref10) 2010; 40 ref49 ref7 ref9 ref4 ref3 ref6 ref5 ref35 ref34 ref37 ref36 ref31 ref30 ref32 ref2 ref1 ref39 mercer (ref24) 1909; 209 ref23 ahmed (ref44) 2008 ref25 ref20 ref63 du (ref11) 2011; 41 ref21 williams (ref62) 2001 ref28 ref27 ref29 ref60 ref61 |
References_xml | – ident: ref16 doi: 10.1145/75577.75582 – ident: ref49 doi: 10.1109/TSP.2004.830985 – ident: ref15 doi: 10.1109/TSMCB.2010.2044040 – volume: 10 start-page: 1 year: 2013 ident: ref33 article-title: Keystroke dynamics authentication: A survey of free-text methods publication-title: Int J Comput Sci Issues – ident: ref43 doi: 10.1109/ICC.2008.301 – ident: ref61 doi: 10.1145/502512.502540 – ident: ref3 doi: 10.1109/TIFS.2010.2075927 – ident: ref7 doi: 10.1145/1029208.1029210 – ident: ref63 doi: 10.1007/s10287-005-0003-7 – ident: ref56 doi: 10.1109/TSP.2008.2009895 – ident: ref25 doi: 10.2307/1267351 – ident: ref18 doi: 10.1162/neco.1995.7.2.219 – ident: ref42 doi: 10.1007/978-3-540-74549-5_62 – ident: ref39 doi: 10.1109/PACCS.2011.5990168 – ident: ref37 doi: 10.1109/CSICC.2009.5349640 – start-page: 94 year: 2008 ident: ref44 article-title: Digital fingerprinting based on keystroke dynamics publication-title: Proc HAIS – volume: 40 start-page: 958 year: 2010 ident: ref8 article-title: Regularized locality preserving projections and its extensions for face recognition publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2009.2032926 – start-page: 515 year: 1998 ident: ref52 article-title: Ridge regression learning algorithm in dual variables publication-title: Proc 15th Int Conf Mach Learn – volume: 1 start-page: 433 year: 2010 ident: ref38 article-title: User authentication based on keystroke analysis of long free texts with a reduced number of features publication-title: Proc 2nd Int Conf Commun Syst Netw Appl (ICCSNA) – volume: 16 start-page: 321 year: 2002 ident: ref58 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: J Artif Intell Res doi: 10.1613/jair.953 – ident: ref31 doi: 10.1109/TSMCC.2008.2001696 – volume: 40 start-page: 703 year: 2010 ident: ref10 article-title: On a methodology for robust segmentation of nonideal iris images publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2009.2015426 – ident: ref60 doi: 10.1145/1007730.1007735 – ident: ref9 doi: 10.1109/TSMCB.2012.2200675 – ident: ref57 doi: 10.1109/TAES.1986.310699 – ident: ref46 doi: 10.1109/MITP.2013.52 – ident: ref1 doi: 10.1145/322796.322806 – volume: 41 start-page: 64 year: 2011 ident: ref11 article-title: Video-based noncooperative iris image segmentation publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2010.2045371 – ident: ref32 doi: 10.1109/DSN.2009.5270346 – volume: 17 year: 1975 ident: ref17 article-title: Keyboard apparatus for personal identification publication-title: IBM Tech Disclosure Bull – ident: ref36 doi: 10.1109/CVPRW.2006.115 – ident: ref14 doi: 10.1109/TSMCB.2009.2031091 – ident: ref41 doi: 10.1007/3-540-48412-4_32 – ident: ref2 doi: 10.1109/MSP.2004.89 – ident: ref20 doi: 10.1162/089976698300017467 – ident: ref30 doi: 10.1109/TSMCB.2005.846648 – ident: ref28 doi: 10.1109/3477.558812 – ident: ref5 doi: 10.1109/TPAMI.2007.1010 – start-page: 682 year: 2001 ident: ref62 article-title: Using the Nyström method to speed up kernel machines publication-title: Proc Adv Neural Inf Process Syst – ident: ref21 doi: 10.1109/TNN.2006.873281 – year: 2006 ident: ref40 article-title: Keystroke biometric recognition on long-text input: A feasibility study publication-title: Proc Int Workshop Sci Comput Comput Stat (IWSCCS) – volume: 39 start-page: 195 year: 1943 ident: ref26 article-title: On the stability of inverse problems publication-title: Doklady Akademii Nauk SSSR – ident: ref27 doi: 10.1109/ICASSP.2012.6288316 – ident: ref23 doi: 10.1017/CBO9781139176224 – ident: ref34 doi: 10.1145/266420.266434 – ident: ref54 doi: 10.1109/TPAMI.2011.153 – volume: 209 start-page: 441 year: 1909 ident: ref24 article-title: Functions of positive and negative type, and their connection with the theory of integral equations publication-title: Philosoph Trans Roy Soc Lond A – ident: ref35 doi: 10.1109/TCYB.2013.2257745 – ident: ref13 doi: 10.1109/TSMCB.2012.2183635 – ident: ref19 doi: 10.1007/978-1-4757-2440-0 – ident: ref51 doi: 10.1109/TSP.2007.907881 – ident: ref29 doi: 10.1145/581271.581272 – ident: ref53 doi: 10.1145/1961189.1961199 – ident: ref47 doi: 10.1109/ICASSP.2014.6854761 – ident: ref12 doi: 10.1109/TSMCB.2011.2155648 – ident: ref59 doi: 10.1145/1007730.1007734 – ident: ref55 doi: 10.1109/ECTICON.2009.5137142 – ident: ref4 doi: 10.1109/TCSVT.2003.818350 – year: 2001 ident: ref22 publication-title: Pattern Classification – ident: ref50 doi: 10.1109/TSP.2004.830991 – ident: ref6 doi: 10.1145/1085126.1085129 – start-page: 245 year: 1999 ident: ref48 article-title: A kernel-based adaline publication-title: Proc European Symp Artificial Neural Networks (ESANN) – ident: ref45 doi: 10.1109/IJCB.2011.6117552 |
SSID | ssj0000816898 |
Score | 2.3450596 |
Snippet | In this paper, a fast kernel ridge regression (KRR) learning algorithm is adopted with O(N) training cost for largescale active authentication system. A... In this paper, a fast kernel ridge regression (KRR) learning algorithm is adopted with ( ) training cost for large-scale active authentication system. A... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3916 |
SubjectTerms | Active authentication Algorithms Authentication Basis functions Biomedical monitoring cost-effective Feature extraction Kernel Kernel functions kernel methods kernel ridge regression (KRR) Keyboards keystroke Machine learning Radial basis function support vector machine (SVM) Support vector machines Training truncated-radial basis function (TRBF) |
Title | Cost-Effective Kernel Ridge Regression Implementation for Keystroke-Based Active Authentication System |
URI | https://ieeexplore.ieee.org/document/7529146 https://www.ncbi.nlm.nih.gov/pubmed/27529880 https://www.proquest.com/docview/2174461961 https://www.proquest.com/docview/1859715841 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp15KKS0s0MpIPdCKLNnE-fARViDUCg4IJDhFsXfcAzRBm-yh_PrO2N4IVVD1FimOk-iN7Tf2zBuALyrV1sQmjZLSkoNSFyrSmWFtvFQbM0tt4tLFLi7z8xv5_Ta7XYHDIRcGEV3wGY750p3lz1qz4K2yoyJLFI3sVVglx83nag37Ka6AhCt9m9BFRKyiCIeYk1gdXU_vTjiOKx8T3WeBRBYB5u5K1oN8tiK5Eiuvs0236pytw8Xye32wyf140euxefpLyvF_f-gdvA30Uxx7e9mAFWzew0YY4J04CCrUXzfBTtuuj7y4Mc2I4gfOG3wQV5zfJa7wp4-fbYSTF_4VMpgaQRyYmv7u-nl7j9EJrZEzcex74N04jk3ym4TCa6V_gJuz0-vpeRSKMkQmlaqPUEqrpTR1kdRxYnObaWKJskDWHiwVQas1cZ40wXKCNZGBWqtc2bysS01TqUk_wlrTNrgNIstqSzMOAaeNRHJtslwRu0FDnZD5pCOIl8BUJiiWc-GMh8p5LrGqGNaKYa0CrCP4Njzy6OU6_tV4kyEZGgY0RrC3RL8KA7qr2HOT5GzmkxHsD7dpKPL5St1gu-gqoj6qmBCjozZb3mqGvpfGtvPyO3fhTcJ8wSU57sFaP1_gJ2I7vf7szPwPDN33zg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9NAEB2VcoALUMpHoMAigQRITp315x44tIEqJW0PVSqVk-vdjDm02Ch2hMpv4a_w35jZ3VgIAbdK3Cxls4ntN7NvdmfeALxQka5MaKJA5hUFKGWmAp0Y1saLtDHzqJK2XOzwKJ2cxB9Ok9M1-N7XwiCiTT7DIV_as_x5Y5a8VbadJVKRZfsUyilefqUArX27_47e5ksp997PxpPA9xAITBSrLsA4rnQcmzKTZSirtEo0kZo4Q5bKyxX9E61piY4k5iMsae0qtUpVleZlrsnyTUTzXoPrxDMS6arD-h0c27LCNtuVdBEQj8n8sekoVNuz8cddzhxLhxRgsCQjyw7zDeSsQPnLGmibuvyd39p1bu82_Fg9IZfecj5cdnpovv0mHvm_PsI7cMsTbLHjLGID1rC-CxvehbXildfZfr0J1bhpu8DJN5PPF1Nc1HghjrmCTRzjJ5chXAsroPzZ12jVglg-Db1su0VzjsEusYC52HEz8H4jZ1-5bVDh1ODvwcmV3O99WK-bGh-CSJKyIp9KQNEmRgreklQRf0NDk5CBRAMIV0AojNdk59YgF4WNzUJVMIwKhlHhYTSAN_1XvjhBkn8N3mQI9AP92x_A1gpthXdZbcGxaUzhdDoawPP-Y3I2fIJU1tgs24LIncpGxFlpzAOH0n7uFbgf_fk3n8GNyezwoDjYP5o-hpuS2ZEt6dyC9W6xxCfE7Tr91JqYgLOrBuRPRa5VRA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cost-Effective+Kernel+Ridge+Regression+Implementation+for+Keystroke-Based+Active+Authentication+System&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Pei-Yuan+Wu&rft.au=Chi-Chen+Fang&rft.au=Chang%2C+Jien+Morris&rft.au=Sun-Yuan+Kung&rft.date=2017-11-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=47&rft.issue=11&rft.spage=3916&rft.epage=3927&rft_id=info:doi/10.1109%2FTCYB.2016.2590472&rft_id=info%3Apmid%2F27529880&rft.externalDocID=7529146 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |