Cost-Effective Kernel Ridge Regression Implementation for Keystroke-Based Active Authentication System

In this paper, a fast kernel ridge regression (KRR) learning algorithm is adopted with O(N) training cost for largescale active authentication system. A truncated Gaussian radial basis function (TRBF) kernel is also implemented to provide better cost-performance tradeoff. The fast-KRR algorithm alon...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 47; no. 11; pp. 3916 - 3927
Main Authors Pei-Yuan Wu, Chi-Chen Fang, Chang, Jien Morris, Sun-Yuan Kung
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, a fast kernel ridge regression (KRR) learning algorithm is adopted with O(N) training cost for largescale active authentication system. A truncated Gaussian radial basis function (TRBF) kernel is also implemented to provide better cost-performance tradeoff. The fast-KRR algorithm along with the TRBF kernel offers computational advantages over the traditional support vector machine (SVM) with Gaussian-RBF kernel while preserving the error rate performance. Experimental results validate the cost-effectiveness of the developed authentication system. In numbers, the fast-KRR learning model achieves an equal error rate (EER) of 1.39% with O(N) training time, while SVM with the RBF kernel shows an EER of 1.41% with O(N 2 ) training time.
AbstractList In this paper, a fast kernel ridge regression (KRR) learning algorithm is adopted with O(N) training cost for largescale active authentication system. A truncated Gaussian radial basis function (TRBF) kernel is also implemented to provide better cost-performance tradeoff. The fast-KRR algorithm along with the TRBF kernel offers computational advantages over the traditional support vector machine (SVM) with Gaussian-RBF kernel while preserving the error rate performance. Experimental results validate the cost-effectiveness of the developed authentication system. In numbers, the fast-KRR learning model achieves an equal error rate (EER) of 1.39% with O(N) training time, while SVM with the RBF kernel shows an EER of 1.41% with O(N 2 ) training time.
In this paper, a fast kernel ridge regression (KRR) learning algorithm is adopted with ( ) training cost for large-scale active authentication system. A truncated Gaussian radial basis function (TRBF) kernel is also implemented to provide better cost-performance tradeoff. The fast-KRR algorithm along with the TRBF kernel offers computational advantages over the traditional support vector machine (SVM) with Gaussian-RBF kernel while preserving the error rate performance. Experimental results validate the cost-effectiveness of the developed authentication system. In numbers, the fast-KRR learning model achieves an equal error rate (EER) of 1.39% with ( ) training time, while SVM with the RBF kernel shows an EER of 1.41% with ( ) training time.
In this paper, a fast kernel ridge regression (KRR) learning algorithm is adopted with O(N) training cost for largescale active authentication system. A truncated Gaussian radial basis function (TRBF) kernel is also implemented to provide better cost-performance tradeoff. The fast-KRR algorithm along with the TRBF kernel offers computational advantages over the traditional support vector machine (SVM) with Gaussian-RBF kernel while preserving the error rate performance. Experimental results validate the cost-effectiveness of the developed authentication system. In numbers, the fast-KRR learning model achieves an equal error rate (EER) of 1.39% with O(N) training time, while SVM with the RBF kernel shows an EER of 1.41% with O(N2) training time.
Author Chi-Chen Fang
Sun-Yuan Kung
Chang, Jien Morris
Pei-Yuan Wu
Author_xml – sequence: 1
  surname: Pei-Yuan Wu
  fullname: Pei-Yuan Wu
  email: peiyuanwu1987@gmail.com
  organization: Dept. of Electr. Eng., Princeton Univ., Princeton, NJ, USA
– sequence: 2
  surname: Chi-Chen Fang
  fullname: Chi-Chen Fang
  email: cfang@iastate.edu
  organization: Dept. of Electr. & Comput. Eng., Iowa State Univ., Ames, IA, USA
– sequence: 3
  givenname: Jien Morris
  surname: Chang
  fullname: Chang, Jien Morris
  organization: Dept. of Electr. & Comput. Eng., Iowa State Univ., Ames, IA, USA
– sequence: 4
  surname: Sun-Yuan Kung
  fullname: Sun-Yuan Kung
  organization: Dept. of ECE, Princeton Univ., Princeton, NJ, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27529880$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1L5TAUhoMo48f4A0SQwmzc9E6SpmmyvF78QkFwnMWsQtqeaLRtrkk64L83pVcXLjybnBOe9-Vw3n20PbgBEDoieEEIlr8fVv_OFhQTvqClxKyiW2iPEi5ySqty-7Pn1S46DOEZpxLpS4ofaDcRVAqB95BZuRDzc2OgifY_ZDfgB-iye9s-QnYPjx5CsG7Irvt1Bz0MUcdpNM4n9C1E714gP9MB2mw5OyzH-JQ428zknwRB_xPtGN0FONy8B-jvxfnD6iq_vbu8Xi1v86ZgMubAmKkZa3RFNaaGm7LGRLIKMGVSSMpJXUtZFBQEAS3KQteSS8OFFnXbQlMcoNPZd-3d6wghqt6GBrpOD-DGoIgoZUVKwUhCf31Bn93oh7SdoqRijBPJJ-pkQ411D61ae9tr_6Y-LpiAagYa70LwYFRj5yNFr22nCFZTXGqKS01xqU1cSUm-KD_Mv9MczxoLAJ_8tAthvHgHB0Cfkg
CODEN ITCEB8
CitedBy_id crossref_primary_10_1145_3465171
crossref_primary_10_1016_j_compscitech_2021_109186
crossref_primary_10_1016_j_neucom_2022_03_042
crossref_primary_10_1145_3485060
crossref_primary_10_1109_ACCESS_2018_2841347
crossref_primary_10_1002_bkcs_12776
crossref_primary_10_1088_1674_1137_ac6154
crossref_primary_10_1088_1674_1137_acc791
crossref_primary_10_1109_TCYB_2021_3071665
crossref_primary_10_3233_KES_190414
crossref_primary_10_1145_3397179
crossref_primary_10_1007_s12652_021_03301_x
crossref_primary_10_1016_j_patcog_2020_107587
crossref_primary_10_1109_TAP_2019_2911645
crossref_primary_10_1007_s42979_021_00840_0
crossref_primary_10_1016_j_ress_2021_108018
crossref_primary_10_1103_PhysRevC_101_051301
crossref_primary_10_1177_00219983221127400
crossref_primary_10_1007_s12559_019_09705_4
crossref_primary_10_1109_TCSS_2024_3414587
crossref_primary_10_1109_JIOT_2021_3107581
crossref_primary_10_1109_TETCI_2024_3485677
crossref_primary_10_51847_tsW1aBTPdk
crossref_primary_10_1109_ACCESS_2019_2936034
crossref_primary_10_1016_j_compbiomed_2023_107818
crossref_primary_10_1016_j_sigpro_2022_108559
crossref_primary_10_1109_TAP_2018_2872161
crossref_primary_10_1007_s41365_024_01379_4
crossref_primary_10_1016_j_neucom_2021_09_046
crossref_primary_10_1016_j_aeue_2022_154239
crossref_primary_10_1016_j_asoc_2024_112469
crossref_primary_10_1109_ACCESS_2020_3019467
crossref_primary_10_1007_s40831_025_01027_0
crossref_primary_10_1016_j_ins_2017_10_044
crossref_primary_10_1109_TCYB_2019_2901248
Cites_doi 10.1145/75577.75582
10.1109/TSP.2004.830985
10.1109/TSMCB.2010.2044040
10.1109/ICC.2008.301
10.1145/502512.502540
10.1109/TIFS.2010.2075927
10.1145/1029208.1029210
10.1007/s10287-005-0003-7
10.1109/TSP.2008.2009895
10.2307/1267351
10.1162/neco.1995.7.2.219
10.1007/978-3-540-74549-5_62
10.1109/PACCS.2011.5990168
10.1109/CSICC.2009.5349640
10.1109/TSMCB.2009.2032926
10.1613/jair.953
10.1109/TSMCC.2008.2001696
10.1109/TSMCB.2009.2015426
10.1145/1007730.1007735
10.1109/TSMCB.2012.2200675
10.1109/TAES.1986.310699
10.1109/MITP.2013.52
10.1145/322796.322806
10.1109/TSMCB.2010.2045371
10.1109/DSN.2009.5270346
10.1109/CVPRW.2006.115
10.1109/TSMCB.2009.2031091
10.1007/3-540-48412-4_32
10.1109/MSP.2004.89
10.1162/089976698300017467
10.1109/TSMCB.2005.846648
10.1109/3477.558812
10.1109/TPAMI.2007.1010
10.1109/TNN.2006.873281
10.1109/ICASSP.2012.6288316
10.1017/CBO9781139176224
10.1145/266420.266434
10.1109/TPAMI.2011.153
10.1109/TCYB.2013.2257745
10.1109/TSMCB.2012.2183635
10.1007/978-1-4757-2440-0
10.1109/TSP.2007.907881
10.1145/581271.581272
10.1145/1961189.1961199
10.1109/ICASSP.2014.6854761
10.1109/TSMCB.2011.2155648
10.1145/1007730.1007734
10.1109/ECTICON.2009.5137142
10.1109/TCSVT.2003.818350
10.1109/TSP.2004.830991
10.1145/1085126.1085129
10.1109/IJCB.2011.6117552
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2016.2590472
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Aerospace Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 3927
ExternalDocumentID 27529880
10_1109_TCYB_2016_2590472
7529146
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Active Authentication Program of Defense Advanced Research Projects Agency
  grantid: FA8750-12-2-0200
  funderid: 10.13039/100000185
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-e44fb44ca72a02f6f5b01947e024989261bb99332e81ea853ab969f68a8bddec3
IEDL.DBID RIE
ISSN 2168-2267
IngestDate Fri Jul 11 12:06:16 EDT 2025
Mon Jun 30 03:59:00 EDT 2025
Thu Jan 02 23:09:09 EST 2025
Tue Jul 01 04:35:07 EDT 2025
Thu Apr 24 23:06:23 EDT 2025
Tue Aug 26 16:38:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-e44fb44ca72a02f6f5b01947e024989261bb99332e81ea853ab969f68a8bddec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7860-3678
PMID 27529880
PQID 2174461961
PQPubID 85422
PageCount 12
ParticipantIDs proquest_miscellaneous_1859715841
proquest_journals_2174461961
ieee_primary_7529146
pubmed_primary_27529880
crossref_citationtrail_10_1109_TCYB_2016_2590472
crossref_primary_10_1109_TCYB_2016_2590472
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
lu (ref8) 2010; 40
ref59
ref15
ref14
ref53
ref55
ref54
chawla (ref58) 2002; 16
ref16
saunders (ref52) 1998
ref19
ref18
ref51
ref50
alsultan (ref33) 2013; 10
ref46
ref45
curtin (ref40) 2006
ref47
ref42
tikhonov (ref26) 1943; 39
ref41
ref43
park (ref38) 2010; 1
frieß (ref48) 1999
spillane (ref17) 1975; 17
duda (ref22) 2001
zuo (ref10) 2010; 40
ref49
ref7
ref9
ref4
ref3
ref6
ref5
ref35
ref34
ref37
ref36
ref31
ref30
ref32
ref2
ref1
ref39
mercer (ref24) 1909; 209
ref23
ahmed (ref44) 2008
ref25
ref20
ref63
du (ref11) 2011; 41
ref21
williams (ref62) 2001
ref28
ref27
ref29
ref60
ref61
References_xml – ident: ref16
  doi: 10.1145/75577.75582
– ident: ref49
  doi: 10.1109/TSP.2004.830985
– ident: ref15
  doi: 10.1109/TSMCB.2010.2044040
– volume: 10
  start-page: 1
  year: 2013
  ident: ref33
  article-title: Keystroke dynamics authentication: A survey of free-text methods
  publication-title: Int J Comput Sci Issues
– ident: ref43
  doi: 10.1109/ICC.2008.301
– ident: ref61
  doi: 10.1145/502512.502540
– ident: ref3
  doi: 10.1109/TIFS.2010.2075927
– ident: ref7
  doi: 10.1145/1029208.1029210
– ident: ref63
  doi: 10.1007/s10287-005-0003-7
– ident: ref56
  doi: 10.1109/TSP.2008.2009895
– ident: ref25
  doi: 10.2307/1267351
– ident: ref18
  doi: 10.1162/neco.1995.7.2.219
– ident: ref42
  doi: 10.1007/978-3-540-74549-5_62
– ident: ref39
  doi: 10.1109/PACCS.2011.5990168
– ident: ref37
  doi: 10.1109/CSICC.2009.5349640
– start-page: 94
  year: 2008
  ident: ref44
  article-title: Digital fingerprinting based on keystroke dynamics
  publication-title: Proc HAIS
– volume: 40
  start-page: 958
  year: 2010
  ident: ref8
  article-title: Regularized locality preserving projections and its extensions for face recognition
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2009.2032926
– start-page: 515
  year: 1998
  ident: ref52
  article-title: Ridge regression learning algorithm in dual variables
  publication-title: Proc 15th Int Conf Mach Learn
– volume: 1
  start-page: 433
  year: 2010
  ident: ref38
  article-title: User authentication based on keystroke analysis of long free texts with a reduced number of features
  publication-title: Proc 2nd Int Conf Commun Syst Netw Appl (ICCSNA)
– volume: 16
  start-page: 321
  year: 2002
  ident: ref58
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.953
– ident: ref31
  doi: 10.1109/TSMCC.2008.2001696
– volume: 40
  start-page: 703
  year: 2010
  ident: ref10
  article-title: On a methodology for robust segmentation of nonideal iris images
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2009.2015426
– ident: ref60
  doi: 10.1145/1007730.1007735
– ident: ref9
  doi: 10.1109/TSMCB.2012.2200675
– ident: ref57
  doi: 10.1109/TAES.1986.310699
– ident: ref46
  doi: 10.1109/MITP.2013.52
– ident: ref1
  doi: 10.1145/322796.322806
– volume: 41
  start-page: 64
  year: 2011
  ident: ref11
  article-title: Video-based noncooperative iris image segmentation
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2010.2045371
– ident: ref32
  doi: 10.1109/DSN.2009.5270346
– volume: 17
  year: 1975
  ident: ref17
  article-title: Keyboard apparatus for personal identification
  publication-title: IBM Tech Disclosure Bull
– ident: ref36
  doi: 10.1109/CVPRW.2006.115
– ident: ref14
  doi: 10.1109/TSMCB.2009.2031091
– ident: ref41
  doi: 10.1007/3-540-48412-4_32
– ident: ref2
  doi: 10.1109/MSP.2004.89
– ident: ref20
  doi: 10.1162/089976698300017467
– ident: ref30
  doi: 10.1109/TSMCB.2005.846648
– ident: ref28
  doi: 10.1109/3477.558812
– ident: ref5
  doi: 10.1109/TPAMI.2007.1010
– start-page: 682
  year: 2001
  ident: ref62
  article-title: Using the Nyström method to speed up kernel machines
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref21
  doi: 10.1109/TNN.2006.873281
– year: 2006
  ident: ref40
  article-title: Keystroke biometric recognition on long-text input: A feasibility study
  publication-title: Proc Int Workshop Sci Comput Comput Stat (IWSCCS)
– volume: 39
  start-page: 195
  year: 1943
  ident: ref26
  article-title: On the stability of inverse problems
  publication-title: Doklady Akademii Nauk SSSR
– ident: ref27
  doi: 10.1109/ICASSP.2012.6288316
– ident: ref23
  doi: 10.1017/CBO9781139176224
– ident: ref34
  doi: 10.1145/266420.266434
– ident: ref54
  doi: 10.1109/TPAMI.2011.153
– volume: 209
  start-page: 441
  year: 1909
  ident: ref24
  article-title: Functions of positive and negative type, and their connection with the theory of integral equations
  publication-title: Philosoph Trans Roy Soc Lond A
– ident: ref35
  doi: 10.1109/TCYB.2013.2257745
– ident: ref13
  doi: 10.1109/TSMCB.2012.2183635
– ident: ref19
  doi: 10.1007/978-1-4757-2440-0
– ident: ref51
  doi: 10.1109/TSP.2007.907881
– ident: ref29
  doi: 10.1145/581271.581272
– ident: ref53
  doi: 10.1145/1961189.1961199
– ident: ref47
  doi: 10.1109/ICASSP.2014.6854761
– ident: ref12
  doi: 10.1109/TSMCB.2011.2155648
– ident: ref59
  doi: 10.1145/1007730.1007734
– ident: ref55
  doi: 10.1109/ECTICON.2009.5137142
– ident: ref4
  doi: 10.1109/TCSVT.2003.818350
– year: 2001
  ident: ref22
  publication-title: Pattern Classification
– ident: ref50
  doi: 10.1109/TSP.2004.830991
– ident: ref6
  doi: 10.1145/1085126.1085129
– start-page: 245
  year: 1999
  ident: ref48
  article-title: A kernel-based adaline
  publication-title: Proc European Symp Artificial Neural Networks (ESANN)
– ident: ref45
  doi: 10.1109/IJCB.2011.6117552
SSID ssj0000816898
Score 2.3450596
Snippet In this paper, a fast kernel ridge regression (KRR) learning algorithm is adopted with O(N) training cost for largescale active authentication system. A...
In this paper, a fast kernel ridge regression (KRR) learning algorithm is adopted with ( ) training cost for large-scale active authentication system. A...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3916
SubjectTerms Active authentication
Algorithms
Authentication
Basis functions
Biomedical monitoring
cost-effective
Feature extraction
Kernel
Kernel functions
kernel methods
kernel ridge regression (KRR)
Keyboards
keystroke
Machine learning
Radial basis function
support vector machine (SVM)
Support vector machines
Training
truncated-radial basis function (TRBF)
Title Cost-Effective Kernel Ridge Regression Implementation for Keystroke-Based Active Authentication System
URI https://ieeexplore.ieee.org/document/7529146
https://www.ncbi.nlm.nih.gov/pubmed/27529880
https://www.proquest.com/docview/2174461961
https://www.proquest.com/docview/1859715841
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp15KKS0s0MpIPdCKLNnE-fARViDUCg4IJDhFsXfcAzRBm-yh_PrO2N4IVVD1FimOk-iN7Tf2zBuALyrV1sQmjZLSkoNSFyrSmWFtvFQbM0tt4tLFLi7z8xv5_Ta7XYHDIRcGEV3wGY750p3lz1qz4K2yoyJLFI3sVVglx83nag37Ka6AhCt9m9BFRKyiCIeYk1gdXU_vTjiOKx8T3WeBRBYB5u5K1oN8tiK5Eiuvs0236pytw8Xye32wyf140euxefpLyvF_f-gdvA30Uxx7e9mAFWzew0YY4J04CCrUXzfBTtuuj7y4Mc2I4gfOG3wQV5zfJa7wp4-fbYSTF_4VMpgaQRyYmv7u-nl7j9EJrZEzcex74N04jk3ym4TCa6V_gJuz0-vpeRSKMkQmlaqPUEqrpTR1kdRxYnObaWKJskDWHiwVQas1cZ40wXKCNZGBWqtc2bysS01TqUk_wlrTNrgNIstqSzMOAaeNRHJtslwRu0FDnZD5pCOIl8BUJiiWc-GMh8p5LrGqGNaKYa0CrCP4Njzy6OU6_tV4kyEZGgY0RrC3RL8KA7qr2HOT5GzmkxHsD7dpKPL5St1gu-gqoj6qmBCjozZb3mqGvpfGtvPyO3fhTcJ8wSU57sFaP1_gJ2I7vf7szPwPDN33zg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9NAEB2VcoALUMpHoMAigQRITp315x44tIEqJW0PVSqVk-vdjDm02Ch2hMpv4a_w35jZ3VgIAbdK3Cxls4ntN7NvdmfeALxQka5MaKJA5hUFKGWmAp0Y1saLtDHzqJK2XOzwKJ2cxB9Ok9M1-N7XwiCiTT7DIV_as_x5Y5a8VbadJVKRZfsUyilefqUArX27_47e5ksp997PxpPA9xAITBSrLsA4rnQcmzKTZSirtEo0kZo4Q5bKyxX9E61piY4k5iMsae0qtUpVleZlrsnyTUTzXoPrxDMS6arD-h0c27LCNtuVdBEQj8n8sekoVNuz8cddzhxLhxRgsCQjyw7zDeSsQPnLGmibuvyd39p1bu82_Fg9IZfecj5cdnpovv0mHvm_PsI7cMsTbLHjLGID1rC-CxvehbXildfZfr0J1bhpu8DJN5PPF1Nc1HghjrmCTRzjJ5chXAsroPzZ12jVglg-Db1su0VzjsEusYC52HEz8H4jZ1-5bVDh1ODvwcmV3O99WK-bGh-CSJKyIp9KQNEmRgreklQRf0NDk5CBRAMIV0AojNdk59YgF4WNzUJVMIwKhlHhYTSAN_1XvjhBkn8N3mQI9AP92x_A1gpthXdZbcGxaUzhdDoawPP-Y3I2fIJU1tgs24LIncpGxFlpzAOH0n7uFbgf_fk3n8GNyezwoDjYP5o-hpuS2ZEt6dyC9W6xxCfE7Tr91JqYgLOrBuRPRa5VRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cost-Effective+Kernel+Ridge+Regression+Implementation+for+Keystroke-Based+Active+Authentication+System&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Pei-Yuan+Wu&rft.au=Chi-Chen+Fang&rft.au=Chang%2C+Jien+Morris&rft.au=Sun-Yuan+Kung&rft.date=2017-11-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=47&rft.issue=11&rft.spage=3916&rft.epage=3927&rft_id=info:doi/10.1109%2FTCYB.2016.2590472&rft_id=info%3Apmid%2F27529880&rft.externalDocID=7529146
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon