Cost-Effective Kernel Ridge Regression Implementation for Keystroke-Based Active Authentication System

In this paper, a fast kernel ridge regression (KRR) learning algorithm is adopted with O(N) training cost for largescale active authentication system. A truncated Gaussian radial basis function (TRBF) kernel is also implemented to provide better cost-performance tradeoff. The fast-KRR algorithm alon...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 47; no. 11; pp. 3916 - 3927
Main Authors Pei-Yuan Wu, Chi-Chen Fang, Chang, Jien Morris, Sun-Yuan Kung
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, a fast kernel ridge regression (KRR) learning algorithm is adopted with O(N) training cost for largescale active authentication system. A truncated Gaussian radial basis function (TRBF) kernel is also implemented to provide better cost-performance tradeoff. The fast-KRR algorithm along with the TRBF kernel offers computational advantages over the traditional support vector machine (SVM) with Gaussian-RBF kernel while preserving the error rate performance. Experimental results validate the cost-effectiveness of the developed authentication system. In numbers, the fast-KRR learning model achieves an equal error rate (EER) of 1.39% with O(N) training time, while SVM with the RBF kernel shows an EER of 1.41% with O(N 2 ) training time.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
DOI:10.1109/TCYB.2016.2590472