Decentralized Adaptive Fuzzy Secure Control for Nonlinear Uncertain Interconnected Systems Against Intermittent DoS Attacks

Cyber-physical systems (CPSs) are naturally highly interconnected and complexly nonlinear. This paper investigates the problem of decentralized adaptive output feedback control for CPSs subject to intermittent denial-of-service (DoS) attacks. The considered CPSs are modeled as a class of nonlinear u...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 49; no. 3; pp. 827 - 838
Main Authors An, Liwei, Yang, Guang-Hong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cyber-physical systems (CPSs) are naturally highly interconnected and complexly nonlinear. This paper investigates the problem of decentralized adaptive output feedback control for CPSs subject to intermittent denial-of-service (DoS) attacks. The considered CPSs are modeled as a class of nonlinear uncertain strict-feedback interconnected systems. When a DoS attack is active, all the state variables become unavailable and standard backstepping cannot be applied. To overcome this difficulty, a switching-type adaptive state estimator is constructed. Based on an improved average dwell time method incorporated by frequency and duration properties of DoS attacks, convex design conditions of controller parameters are derived in term of solving a set of linear matrix inequalities. The proposed controller guarantees that all closed-loop signals remain bounded, while the error signals converge to a small neighborhood of the origin. As an illustrative example, the proposed control scheme is applied to a power network system.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2017.2787740