Do optimal entropy-constrained quantizers have a finite or infinite number of codewords?
An entropy-constrained quantizer Q is optimal if it minimizes the expected distortion D(Q) subject to a constraint on the output entropy H(Q). We use the Lagrangian formulation to show the existence and study the structure of optimal entropy-constrained quantizers that achieve a point on the lower c...
Saved in:
Published in | IEEE transactions on information theory Vol. 49; no. 11; pp. 3031 - 3037 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2003
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An entropy-constrained quantizer Q is optimal if it minimizes the expected distortion D(Q) subject to a constraint on the output entropy H(Q). We use the Lagrangian formulation to show the existence and study the structure of optimal entropy-constrained quantizers that achieve a point on the lower convex hull of the operational distortion-rate function D/sub h/(R) = inf/sub Q/{D(Q) : H(Q) /spl les/ R}. In general, an optimal entropy-constrained quantizer may have a countably infinite number of codewords. Our main results show that if the tail of the source distribution is sufficiently light (resp., heavy) with respect to the distortion measure, the Lagrangian-optimal entropy-constrained quantizer has a finite (resp., infinite) number of codewords. In particular, for the squared error distortion measure, if the tail of the source distribution is lighter than the tail of a Gaussian distribution, then the Lagrangian-optimal quantizer has only a finite number of codewords, while if the tail is heavier than that of the Gaussian, the Lagrangian-optimal quantizer has an infinite number of codewords. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2003.819340 |