Pulse Arrival Time Segmentation Into Cardiac and Vascular Intervals - Implications for Pulse Wave Velocity and Blood Pressure Estimation

Objective: This study demonstrates a novel method for pulse arrival time (PAT) segmentation into cardiac isovolumic contraction (IVC) and vascular pulse transit time to approximate central pulse wave velocity (PWV). Methods: 10 subjects (38 ± 10 years, 121 ± 12 mmHg SBP) ranging from normotension to...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 68; no. 9; pp. 2810 - 2820
Main Authors Beutel, Fabian, Van Hoof, Chris, Rottenberg, Xavier, Reesink, Koen, Hermeling, Evelien
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Objective: This study demonstrates a novel method for pulse arrival time (PAT) segmentation into cardiac isovolumic contraction (IVC) and vascular pulse transit time to approximate central pulse wave velocity (PWV). Methods: 10 subjects (38 ± 10 years, 121 ± 12 mmHg SBP) ranging from normotension to hypertension were repeatedly measured at rest and with induced changes in blood pressure (BP), and thus PWV. ECG was recorded simultaneously with ultrasound-based carotid distension waveforms, a photoplethysmography-based peripheral waveform, noninvasive continuous and intermittent cuff BP. Central PAT was segmented into cardiac and vascular time intervals using a fiducial point in the carotid distension waveform that reflects the IVC onset. Central and peripheral PWVs were computed from (segmented) intervals and estimated arterial path lengths. Correlations with Bramwell-Hill PWV, systolic and diastolic BP (SBP/DBP) were analyzed by linear regression. Results: Central PWV explained more than twice the variability (R 2 ) in Bramwell-Hill PWV compared to peripheral PWV (0.56 vs. 0.27). SBP estimated from central PWV undercuts the IEEE mean absolute deviation threshold of 5 mmHg, significantly lower than peripheral PWV or PAT (4.2 vs. 7.1 vs. 10.1 mmHg). Conclusion: Cardiac IVC onset signaled in carotid distension waveforms enables PAT segmentation to obtain unbiased vascular pulse transit time. Corresponding PWV estimates provide the basis for single-site assessment of central arterial stiffness, confirmed by significant correlations with Bramwell-Hill PWV and SBP. Significance: In a small-scale cohort, we present proof-of-concept for a novel method to estimate central PWV and BP, bearing potential to improve the practicality of cardiovascular risk assessment in clinical routines.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0018-9294
1558-2531
1558-2531
DOI:10.1109/TBME.2021.3055154