A model of combined feedforward and feedback control of coronary blood flow

Recent evidence shows that norepinephrine affects coronary blood flow not only by alpha-receptor-mediated vasoconstriction and by feedback metabolic vasodilation that occurs as a result of myocardial beta-receptor activation, but also by the direct activation of coronary vascular beta-receptors that...

Full description

Saved in:
Bibliographic Details
Published inThe American journal of physiology Vol. 268; no. 2 Pt 2; p. H895
Main Authors Miyashiro, J K, Feigl, E O
Format Journal Article
LanguageEnglish
Published United States 01.02.1995
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Recent evidence shows that norepinephrine affects coronary blood flow not only by alpha-receptor-mediated vasoconstriction and by feedback metabolic vasodilation that occurs as a result of myocardial beta-receptor activation, but also by the direct activation of coronary vascular beta-receptors that increase flow in a feedforward manner. The implications of combined feedforward and feedback control in maintaining the balance between metabolism and flow were investigated in the present mass balance model. Feedback was represented by a closed loop and was based on the hypothesis that the regulated variables are myocardial PO2 and PCO2 and that divergence of these variables from their operating point values functions as the metabolic error signals that manipulate coronary vascular smooth muscle and flow to match metabolism. alpha-Receptor-mediated vasoconstriction and beta-receptor-mediated vasodilation are represented by feedforward open loops that are activated simultaneously with increases in metabolism. The postulated control schemes of 1) metabolic feedback control alone, 2) feedback plus alpha- and beta-adrenergic feedforward control, and 3) feedback plus beta-adrenergic feedforward control were able to simulate the steady-state increase in coronary flow and the decrease in coronary venous PO2 that occurs during comparable experimental conditions. The simulations demonstrate that 1) the speed and accuracy of the flow response improve as beta-adrenergic feedforward control is added and alpha-adrenergic feedforward control is removed from the control scheme, 2) high feedback gain also improves the accuracy of the flow response, but the penalty is instability, and 3) a lag in alpha-adrenergic feedforward control improves the stability of the coronary response.
ISSN:0002-9513
DOI:10.1152/ajpheart.1995.268.2.h895