Observer-Based Adaptive Fuzzy Fault-Tolerant Optimal Control for SISO Nonlinear Systems

This paper investigates adaptive fuzzy output feedback fault-tolerant optimal control problem for a class of single-input and single-output nonlinear systems in strict feedback form. The considered nonlinear systems contain unknown nonaffine nonlinear faults and unmeasured states. Fuzzy logic system...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 49; no. 2; pp. 649 - 661
Main Authors Li, Yongming, Sun, Kangkang, Tong, Shaocheng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper investigates adaptive fuzzy output feedback fault-tolerant optimal control problem for a class of single-input and single-output nonlinear systems in strict feedback form. The considered nonlinear systems contain unknown nonaffine nonlinear faults and unmeasured states. Fuzzy logic systems are used to approximate cost function and unknown nonlinear functions, respectively. It is assumed that the states of the systems to be controlled are unmeasurable, thus an adaptive state observer is developed. To solve the nonaffine nonlinear fault control design problem, filtered signals are introduced into the adaptive backstepping control design procedures, and in the framework of adaptive critic technique and fault-tolerant control technique, a novel adaptive fuzzy fault-tolerant optimal control scheme is developed. The stability of the closed-loop system is proved by using Lyapunov stability theory. The simulation results verify the effectiveness of the proposed control strategy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2017.2785801