Expert Opinion Fusion Framework Using Subjective Logic for Fault Diagnosis

Fault diagnosis plays a critical role in maintaining and troubleshooting engineered systems. Various diagnosis models, such as Bayesian networks (BNs), have been proposed to deal with this kind of problem in the past. However, the diagnosis results may not be reliable if second-order uncertainty is...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 6; pp. 4300 - 4311
Main Authors Xu, Peng, Cho, Jin-Hee, Salado, Alejandro
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fault diagnosis plays a critical role in maintaining and troubleshooting engineered systems. Various diagnosis models, such as Bayesian networks (BNs), have been proposed to deal with this kind of problem in the past. However, the diagnosis results may not be reliable if second-order uncertainty is involved. This article proposes a hierarchical system diagnosis fusion framework that considers the uncertainty based on a belief model, called subjective logic (SL), which explicitly deals with uncertainty representing a lack of evidence. The proposed system diagnosis fusion framework consists of three steps: 1) individual subjective BNs (SBNs) are designed to represent the knowledge architectures of individual experts; 2) experts are clustered as expert groups according to their similarity; and 3) after inferring expert opinions from respective SBNs, the one opinion fusion method was used to combine all opinions to reach a consensus based on the aggregated opinion for system diagnosis. Via extensive simulation experiments, we show that the proposed fusion framework, consisting of two operators, outperforms the state-of-the-art fusion operator counterparts and has stable performance under various scenarios. Our proposed fusion framework is promising for advancing state-of-the-art fault diagnosis of complex engineered systems.
AbstractList Fault diagnosis plays a critical role in maintaining and troubleshooting engineered systems. Various diagnosis models, such as Bayesian networks (BNs), have been proposed to deal with this kind of problem in the past. However, the diagnosis results may not be reliable if second-order uncertainty is involved. This article proposes a hierarchical system diagnosis fusion framework that considers the uncertainty based on a belief model, called subjective logic (SL), which explicitly deals with uncertainty representing a lack of evidence. The proposed system diagnosis fusion framework consists of three steps: 1) individual subjective BNs (SBNs) are designed to represent the knowledge architectures of individual experts; 2) experts are clustered as expert groups according to their similarity; and 3) after inferring expert opinions from respective SBNs, the one opinion fusion method was used to combine all opinions to reach a consensus based on the aggregated opinion for system diagnosis. Via extensive simulation experiments, we show that the proposed fusion framework, consisting of two operators, outperforms the state-of-the-art fusion operator counterparts and has stable performance under various scenarios. Our proposed fusion framework is promising for advancing state-of-the-art fault diagnosis of complex engineered systems.
Author Xu, Peng
Cho, Jin-Hee
Salado, Alejandro
Author_xml – sequence: 1
  givenname: Peng
  orcidid: 0000-0002-7323-6394
  surname: Xu
  fullname: Xu, Peng
  email: xupeng@vt.edu
  organization: Department of Industrial System Engineering, Virginia Tech, Blacksburg, VA, USA
– sequence: 2
  givenname: Jin-Hee
  orcidid: 0000-0002-5908-4662
  surname: Cho
  fullname: Cho, Jin-Hee
  email: jicho@vt.edu
  organization: Department of Computer Science, Virginia Tech, Falls Church, VA, USA
– sequence: 3
  givenname: Alejandro
  orcidid: 0000-0001-9378-0795
  surname: Salado
  fullname: Salado, Alejandro
  email: asalado@vt.edu
  organization: Department of Industrial System Engineering, Virginia Tech, Blacksburg, VA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33170790$$D View this record in MEDLINE/PubMed
BookMark eNpdkMtOAyEUhonReH8AY2ImceOm9QDDAEutrZc0caEuXBGGYRpqO1SY8fL2Ulu7kM0hh-_8OXwHaLvxjUXoBEMfY5CXz4PX6z4BAn0KhAmALbRPcCF6hHC2vbkXfA8dxziFdERqSbGL9ijFHLiEffQw_FrY0GaPC9c432SjLv6WoOf204e37CW6ZpI9deXUmtZ92GzsJ85ktQ_ZSHezNrtxetL46OIR2qn1LNrjdT1EL6Ph8-CuN368vR9cjXuG5rLtVRQqxplggmtTgjRM1iCpKWlJGCPpR0ZKXBWFZqLEVFd1DjVUAjjmuGY1PUQXq9xF8O-dja2au2jsbKYb67uoSM5kQXIJRULP_6FT34UmbaeSGC4YBkYThVeUCT7GYGu1CG6uw7fCoJau1dK1WrpWa9dp5myd3JVzW20m_swm4HQFOGvt5lkSlmNK6Q9xM4IC
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TII_2023_3331129
crossref_primary_10_1016_j_engfailanal_2023_107172
crossref_primary_10_1016_j_ymssp_2023_110813
crossref_primary_10_1109_TASE_2022_3211873
crossref_primary_10_1109_OJSE_2022_3222731
crossref_primary_10_1109_TSMC_2022_3152784
crossref_primary_10_1016_j_inffus_2024_102538
Cites_doi 10.1007/3-540-30368-5
10.1016/j.engappai.2016.10.017
10.1109/TCST.2009.2026285
10.3390/s17112504
10.1016/j.asoc.2014.04.007
10.3390/s18061920
10.1016/j.measurement.2018.05.098
10.1093/oxfordhb/9780199607617.013.37
10.1016/j.jmsy.2013.03.001
10.1016/j.engappai.2010.06.002
10.1007/3-540-45869-7_21
10.1109/TIE.2019.2931491
10.1109/TIM.2017.2669947
10.1007/978-3-319-93818-9_17
10.1007/s11668-016-0140-z
10.3390/s16111798
10.1007/s12206-007-1010-0
10.1109/ISGTEurope.2013.6695356
10.1109/TASE.2016.2574875
10.1016/j.ress.2007.03.012
10.1515/9780691214696
10.1007/s13198-017-0693-6
10.1142/9789813271494_0004
10.1109/PEMWA.2009.5208325
10.1109/TFUZZ.2016.2587325
10.1016/S0031-3203(99)00223-X
10.1111/exsy.12077
10.1016/j.envsoft.2006.03.006
10.1109/TII.2017.2695583
10.1016/j.ijar.2008.05.003
10.1109/TASE.2016.2542186
10.1016/j.aap.2016.04.020
10.1049/iet-cvi.2012.0193
10.1007/978-3-319-42337-1
10.1016/j.eswa.2012.07.026
10.1016/j.inffus.2005.07.003
10.1109/ETFA.2013.6647984
10.1109/TPEL.2016.2608842
10.1201/9781351174664-382
10.1016/S0098-1354(02)00161-8
10.1007/978-3-319-28702-7_7
10.1115/1.4032399
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
NPM
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2020.3025800
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
PubMed
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Aerospace Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 4311
ExternalDocumentID 10_1109_TCYB_2020_3025800
33170790
9254133
Genre orig-research
Journal Article
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AASAJ
ABQJQ
ACIWK
AENEX
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RIG
RNS
NPM
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-d30d5758587acb09c59f093cb3b2552202c991d66a58b13adf40f0d807171f5f3
IEDL.DBID RIE
ISSN 2168-2267
IngestDate Wed Jul 24 18:44:00 EDT 2024
Thu Oct 10 20:27:35 EDT 2024
Fri Aug 23 01:28:29 EDT 2024
Sat Sep 28 08:19:00 EDT 2024
Mon Nov 04 11:59:57 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-d30d5758587acb09c59f093cb3b2552202c991d66a58b13adf40f0d807171f5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5908-4662
0000-0002-7323-6394
0000-0001-9378-0795
PMID 33170790
PQID 2677851053
PQPubID 85422
PageCount 12
ParticipantIDs crossref_primary_10_1109_TCYB_2020_3025800
pubmed_primary_33170790
ieee_primary_9254133
proquest_miscellaneous_2459624906
proquest_journals_2677851053
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref14
ref52
ref11
ref10
ref17
ref16
Alcobe (ref3) 2005; 18
ref19
Kaplan (ref25)
ref18
ref51
ref50
ref47
ref42
ref41
Tan (ref46) 2005
ref44
ref49
ref8
ref7
ref9
ref4
ref6
ref5
ref40
Friedman (ref15)
Smarandache (ref45) 2004; 1
ref34
ref37
ref36
ref31
ref33
ref32
ref2
ref1
ref39
ref38
Martin (ref30) 2006; 2
Shafer (ref43) 1992; 1
ref24
ref23
ref26
Smarandache (ref48)
ref20
ref22
ref21
ref28
ref27
ref29
Pearl (ref35) 1988
Dezert (ref13) 2009
References_xml – ident: ref20
  doi: 10.1007/3-540-30368-5
– ident: ref18
  doi: 10.1016/j.engappai.2016.10.017
– ident: ref19
  doi: 10.1109/TCST.2009.2026285
– ident: ref51
  doi: 10.3390/s17112504
– ident: ref12
  doi: 10.1016/j.asoc.2014.04.007
– ident: ref27
  doi: 10.3390/s18061920
– ident: ref17
  doi: 10.1016/j.measurement.2018.05.098
– ident: ref14
  doi: 10.1093/oxfordhb/9780199607617.013.37
– volume: 1
  volume-title: Advances and Applications of DSmT for Information Fusion (Collected Works)
  year: 2004
  ident: ref45
  contributor:
    fullname: Smarandache
– ident: ref41
  doi: 10.1016/j.jmsy.2013.03.001
– ident: ref50
  doi: 10.1016/j.engappai.2010.06.002
– ident: ref39
  doi: 10.1007/3-540-45869-7_21
– ident: ref9
  doi: 10.1109/TIE.2019.2931491
– ident: ref10
  doi: 10.1109/TIM.2017.2669947
– ident: ref36
  doi: 10.1007/978-3-319-93818-9_17
– ident: ref11
  doi: 10.1007/s11668-016-0140-z
– ident: ref33
  doi: 10.3390/s16111798
– volume-title: Introduction to Data Mining
  year: 2005
  ident: ref46
  contributor:
    fullname: Tan
– ident: ref34
  doi: 10.1007/s12206-007-1010-0
– volume: 2
  start-page: 69
  volume-title: Advances and Applications of DSmT for Information Fusion: Collected Works
  year: 2006
  ident: ref30
  article-title: A new generalization of the proportional conflict redistribution rule stable in terms of decision
  contributor:
    fullname: Martin
– ident: ref40
  doi: 10.1109/ISGTEurope.2013.6695356
– ident: ref6
  doi: 10.1109/TASE.2016.2574875
– volume-title: An Introduction to DSmT
  year: 2009
  ident: ref13
  contributor:
    fullname: Dezert
– volume-title: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
  year: 1988
  ident: ref35
  contributor:
    fullname: Pearl
– ident: ref44
  doi: 10.1016/j.ress.2007.03.012
– start-page: 1300
  volume-title: Proc. IEEE 19th Int. Conf. Inf. Fusion (FUSION)
  ident: ref25
  article-title: Efficient subjective Bayesian network belief propagation for trees
  contributor:
    fullname: Kaplan
– ident: ref42
  doi: 10.1515/9780691214696
– ident: ref22
  doi: 10.1007/s13198-017-0693-6
– start-page: 2100
  volume-title: Proc. IEEE 18th Int. Conf. Inf. Fusion (Fusion)
  ident: ref48
  article-title: Modified PCR rules of combination with degrees of intersections
  contributor:
    fullname: Smarandache
– ident: ref5
  doi: 10.1142/9789813271494_0004
– ident: ref28
  doi: 10.1109/PEMWA.2009.5208325
– ident: ref2
  doi: 10.1109/TFUZZ.2016.2587325
– ident: ref26
  doi: 10.1016/S0031-3203(99)00223-X
– ident: ref23
  doi: 10.1111/exsy.12077
– ident: ref38
  doi: 10.1016/j.envsoft.2006.03.006
– ident: ref8
  doi: 10.1109/TII.2017.2695583
– ident: ref16
  doi: 10.1016/j.ijar.2008.05.003
– volume: 18
  start-page: 61
  issue: 1
  year: 2005
  ident: ref3
  article-title: Incremental methods for Bayesian network structure learning
  publication-title: Artif. Intell. Commun.
  contributor:
    fullname: Alcobe
– ident: ref29
  doi: 10.1109/TASE.2016.2542186
– ident: ref31
  doi: 10.1016/j.aap.2016.04.020
– ident: ref49
  doi: 10.1049/iet-cvi.2012.0193
– ident: ref24
  doi: 10.1007/978-3-319-42337-1
– ident: ref37
  doi: 10.1016/j.eswa.2012.07.026
– ident: ref4
  doi: 10.1016/j.inffus.2005.07.003
– ident: ref32
  doi: 10.1109/ETFA.2013.6647984
– start-page: 165
  volume-title: Proc. 13th Conf. Uncertainty Artif. Intell.
  ident: ref15
  article-title: Sequential update of Bayesian network structure
  contributor:
    fullname: Friedman
– volume: 1
  start-page: 330
  volume-title: Encyclopedia of Artificial Intelligence
  year: 1992
  ident: ref43
  article-title: Dempster-shafer theory
  contributor:
    fullname: Shafer
– ident: ref7
  doi: 10.1109/TPEL.2016.2608842
– ident: ref1
  doi: 10.1201/9781351174664-382
– ident: ref47
  doi: 10.1016/S0098-1354(02)00161-8
– ident: ref21
  doi: 10.1007/978-3-319-28702-7_7
– ident: ref52
  doi: 10.1115/1.4032399
SSID ssj0000816898
Score 2.3843143
Snippet Fault diagnosis plays a critical role in maintaining and troubleshooting engineered systems. Various diagnosis models, such as Bayesian networks (BNs), have...
SourceID proquest
crossref
pubmed
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 4300
SubjectTerms Bayes methods
Bayesian analysis
Expert clustering
Fault diagnosis
Knowledge engineering
Object oriented modeling
opinion fusion
subjective Bayesian network (SBN)
subjective logic (SL)
Troubleshooting
Uncertainty
Wind turbines
Title Expert Opinion Fusion Framework Using Subjective Logic for Fault Diagnosis
URI https://ieeexplore.ieee.org/document/9254133
https://www.ncbi.nlm.nih.gov/pubmed/33170790
https://www.proquest.com/docview/2677851053
https://search.proquest.com/docview/2459624906
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS-UwFD6oC3EzPkfveJUILlSm19ymbZqlXr2IoG4UdFXSJAUf9MrcdjO_fs5JH4gozKqBhj7OSXK-LzkPgEPuilBybQI09i6InHKBViIPTJwaMkg2MRQ7fHObXD1E14_x4wL87mNhnHPe-cyNqOnP8u3M1LRVdqqQzSCnWoRFqVQTq9Xvp_gCEr70bYiNAFGFbA8xx1yd3k-ezpEMhshR0cgjSFqBZYGmk0tajD9YJF9i5Xu06a3OdBVuuu9tnE1eR3WVj8zfT6kc__eH1uBHCz_ZWTNe1mHBlRuw3k7wOTtqs1Afb8K1T4Jcsbv35xJ1x6b13F86Zy7mnQ0YLjwvzZrJqGyzYQiC2VTXbxW7aLz4nudb8DC9vJ9cBW3hhcCISFWBFdzGRCRSqU3OlYlVwZUwuciRgYQoR4Ow0iaJjtN8LLQtIl5wmxI3HBdxIX7CUjkr3Q4wp6WUbpyHiU0ia6ROlaOMNDbWThVCDuCkE3723uTXyDwv4SojpWWktKxV2gA2SYZ9x1Z8Axh26sraGTjPQsqMR-gRbx_0t3Hu0IGILt2sxj4R1R6KFE8GsN2ouX92Nzp-ff3OXVgJKRDC78cMYan6U7s9hCdVvu_H5T_n5903
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RKrVcoBQoC7R1pR6gIos3TuL4WGhXW8rSyyLRU-TYjrQFZRGbXPrrmXEeQlWROMVSrDxmbM_32fMA-MxdEUquTYDG3gWRUy7QSuSBiVNDBskmhmKHp5fJ5Co6v46vV-C4j4VxznnnMzekpj_LtwtT01bZiUI2g5zqBbxEXJ0mTbRWv6PiS0j44rchNgLEFbI9xhxxdTI7-32KdDBElopmHmHSGrwSaDy5pOX4kU3yRVaexpve7ow3YNp9ceNucjOsq3xo_v6TzPG5v_QG1lsAyr42I2YTVlz5FjbbKb5kh20e6qMtOPdpkCv2625eovbYuF76S-fOxby7AcOl50-zajIq3GwYwmA21vVtxb41fnzz5TZcjb_PziZBW3ohMCJSVWAFtzFRiVRqk3NlYlVwJUwucuQgIcrRILC0SaLjNB8JbYuIF9ymxA5HRVyIHVgtF6XbBea0lNKN8jCxSWSN1KlylJPGxtqpQsgBfOmEn901GTYyz0y4ykhpGSkta5U2gC2SYd-xFd8ADjp1Ze0cXGYh5cYj_Ii3P_W3cfbQkYgu3aLGPhFVH4oUTwbwrlFz_-xudOz9_50f4fVkNr3ILn5c_tyHtZDCIvzuzAGsVve1e49gpco_-DH6AKUG4II
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expert+Opinion+Fusion+Framework+Using+Subjective+Logic+for+Fault+Diagnosis&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Xu%2C+Peng&rft.au=Cho%2C+Jin-Hee&rft.au=Salado%2C+Alejandro&rft.date=2022-06-01&rft.eissn=2168-2275&rft.volume=52&rft.issue=6&rft.spage=4300&rft.epage=4311&rft_id=info:doi/10.1109%2FTCYB.2020.3025800&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon