Expert Opinion Fusion Framework Using Subjective Logic for Fault Diagnosis
Fault diagnosis plays a critical role in maintaining and troubleshooting engineered systems. Various diagnosis models, such as Bayesian networks (BNs), have been proposed to deal with this kind of problem in the past. However, the diagnosis results may not be reliable if second-order uncertainty is...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 52; no. 6; pp. 4300 - 4311 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fault diagnosis plays a critical role in maintaining and troubleshooting engineered systems. Various diagnosis models, such as Bayesian networks (BNs), have been proposed to deal with this kind of problem in the past. However, the diagnosis results may not be reliable if second-order uncertainty is involved. This article proposes a hierarchical system diagnosis fusion framework that considers the uncertainty based on a belief model, called subjective logic (SL), which explicitly deals with uncertainty representing a lack of evidence. The proposed system diagnosis fusion framework consists of three steps: 1) individual subjective BNs (SBNs) are designed to represent the knowledge architectures of individual experts; 2) experts are clustered as expert groups according to their similarity; and 3) after inferring expert opinions from respective SBNs, the one opinion fusion method was used to combine all opinions to reach a consensus based on the aggregated opinion for system diagnosis. Via extensive simulation experiments, we show that the proposed fusion framework, consisting of two operators, outperforms the state-of-the-art fusion operator counterparts and has stable performance under various scenarios. Our proposed fusion framework is promising for advancing state-of-the-art fault diagnosis of complex engineered systems. |
---|---|
AbstractList | Fault diagnosis plays a critical role in maintaining and troubleshooting engineered systems. Various diagnosis models, such as Bayesian networks (BNs), have been proposed to deal with this kind of problem in the past. However, the diagnosis results may not be reliable if second-order uncertainty is involved. This article proposes a hierarchical system diagnosis fusion framework that considers the uncertainty based on a belief model, called subjective logic (SL), which explicitly deals with uncertainty representing a lack of evidence. The proposed system diagnosis fusion framework consists of three steps: 1) individual subjective BNs (SBNs) are designed to represent the knowledge architectures of individual experts; 2) experts are clustered as expert groups according to their similarity; and 3) after inferring expert opinions from respective SBNs, the one opinion fusion method was used to combine all opinions to reach a consensus based on the aggregated opinion for system diagnosis. Via extensive simulation experiments, we show that the proposed fusion framework, consisting of two operators, outperforms the state-of-the-art fusion operator counterparts and has stable performance under various scenarios. Our proposed fusion framework is promising for advancing state-of-the-art fault diagnosis of complex engineered systems. |
Author | Xu, Peng Cho, Jin-Hee Salado, Alejandro |
Author_xml | – sequence: 1 givenname: Peng orcidid: 0000-0002-7323-6394 surname: Xu fullname: Xu, Peng email: xupeng@vt.edu organization: Department of Industrial System Engineering, Virginia Tech, Blacksburg, VA, USA – sequence: 2 givenname: Jin-Hee orcidid: 0000-0002-5908-4662 surname: Cho fullname: Cho, Jin-Hee email: jicho@vt.edu organization: Department of Computer Science, Virginia Tech, Falls Church, VA, USA – sequence: 3 givenname: Alejandro orcidid: 0000-0001-9378-0795 surname: Salado fullname: Salado, Alejandro email: asalado@vt.edu organization: Department of Industrial System Engineering, Virginia Tech, Blacksburg, VA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33170790$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkMtOAyEUhonReH8AY2ImceOm9QDDAEutrZc0caEuXBGGYRpqO1SY8fL2Ulu7kM0hh-_8OXwHaLvxjUXoBEMfY5CXz4PX6z4BAn0KhAmALbRPcCF6hHC2vbkXfA8dxziFdERqSbGL9ijFHLiEffQw_FrY0GaPC9c432SjLv6WoOf204e37CW6ZpI9deXUmtZ92GzsJ85ktQ_ZSHezNrtxetL46OIR2qn1LNrjdT1EL6Ph8-CuN368vR9cjXuG5rLtVRQqxplggmtTgjRM1iCpKWlJGCPpR0ZKXBWFZqLEVFd1DjVUAjjmuGY1PUQXq9xF8O-dja2au2jsbKYb67uoSM5kQXIJRULP_6FT34UmbaeSGC4YBkYThVeUCT7GYGu1CG6uw7fCoJau1dK1WrpWa9dp5myd3JVzW20m_swm4HQFOGvt5lkSlmNK6Q9xM4IC |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1109_TII_2023_3331129 crossref_primary_10_1016_j_engfailanal_2023_107172 crossref_primary_10_1016_j_ymssp_2023_110813 crossref_primary_10_1109_TASE_2022_3211873 crossref_primary_10_1109_OJSE_2022_3222731 crossref_primary_10_1109_TSMC_2022_3152784 crossref_primary_10_1016_j_inffus_2024_102538 |
Cites_doi | 10.1007/3-540-30368-5 10.1016/j.engappai.2016.10.017 10.1109/TCST.2009.2026285 10.3390/s17112504 10.1016/j.asoc.2014.04.007 10.3390/s18061920 10.1016/j.measurement.2018.05.098 10.1093/oxfordhb/9780199607617.013.37 10.1016/j.jmsy.2013.03.001 10.1016/j.engappai.2010.06.002 10.1007/3-540-45869-7_21 10.1109/TIE.2019.2931491 10.1109/TIM.2017.2669947 10.1007/978-3-319-93818-9_17 10.1007/s11668-016-0140-z 10.3390/s16111798 10.1007/s12206-007-1010-0 10.1109/ISGTEurope.2013.6695356 10.1109/TASE.2016.2574875 10.1016/j.ress.2007.03.012 10.1515/9780691214696 10.1007/s13198-017-0693-6 10.1142/9789813271494_0004 10.1109/PEMWA.2009.5208325 10.1109/TFUZZ.2016.2587325 10.1016/S0031-3203(99)00223-X 10.1111/exsy.12077 10.1016/j.envsoft.2006.03.006 10.1109/TII.2017.2695583 10.1016/j.ijar.2008.05.003 10.1109/TASE.2016.2542186 10.1016/j.aap.2016.04.020 10.1049/iet-cvi.2012.0193 10.1007/978-3-319-42337-1 10.1016/j.eswa.2012.07.026 10.1016/j.inffus.2005.07.003 10.1109/ETFA.2013.6647984 10.1109/TPEL.2016.2608842 10.1201/9781351174664-382 10.1016/S0098-1354(02)00161-8 10.1007/978-3-319-28702-7_7 10.1115/1.4032399 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE NPM AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2020.3025800 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online PubMed CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Aerospace Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 4311 |
ExternalDocumentID | 10_1109_TCYB_2020_3025800 33170790 9254133 |
Genre | orig-research Journal Article |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AASAJ ABQJQ ACIWK AENEX AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RIG RNS NPM AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c349t-d30d5758587acb09c59f093cb3b2552202c991d66a58b13adf40f0d807171f5f3 |
IEDL.DBID | RIE |
ISSN | 2168-2267 |
IngestDate | Wed Jul 24 18:44:00 EDT 2024 Thu Oct 10 20:27:35 EDT 2024 Fri Aug 23 01:28:29 EDT 2024 Sat Sep 28 08:19:00 EDT 2024 Mon Nov 04 11:59:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-d30d5758587acb09c59f093cb3b2552202c991d66a58b13adf40f0d807171f5f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5908-4662 0000-0002-7323-6394 0000-0001-9378-0795 |
PMID | 33170790 |
PQID | 2677851053 |
PQPubID | 85422 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_TCYB_2020_3025800 pubmed_primary_33170790 ieee_primary_9254133 proquest_miscellaneous_2459624906 proquest_journals_2677851053 |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref14 ref52 ref11 ref10 ref17 ref16 Alcobe (ref3) 2005; 18 ref19 Kaplan (ref25) ref18 ref51 ref50 ref47 ref42 ref41 Tan (ref46) 2005 ref44 ref49 ref8 ref7 ref9 ref4 ref6 ref5 ref40 Friedman (ref15) Smarandache (ref45) 2004; 1 ref34 ref37 ref36 ref31 ref33 ref32 ref2 ref1 ref39 ref38 Martin (ref30) 2006; 2 Shafer (ref43) 1992; 1 ref24 ref23 ref26 Smarandache (ref48) ref20 ref22 ref21 ref28 ref27 ref29 Pearl (ref35) 1988 Dezert (ref13) 2009 |
References_xml | – ident: ref20 doi: 10.1007/3-540-30368-5 – ident: ref18 doi: 10.1016/j.engappai.2016.10.017 – ident: ref19 doi: 10.1109/TCST.2009.2026285 – ident: ref51 doi: 10.3390/s17112504 – ident: ref12 doi: 10.1016/j.asoc.2014.04.007 – ident: ref27 doi: 10.3390/s18061920 – ident: ref17 doi: 10.1016/j.measurement.2018.05.098 – ident: ref14 doi: 10.1093/oxfordhb/9780199607617.013.37 – volume: 1 volume-title: Advances and Applications of DSmT for Information Fusion (Collected Works) year: 2004 ident: ref45 contributor: fullname: Smarandache – ident: ref41 doi: 10.1016/j.jmsy.2013.03.001 – ident: ref50 doi: 10.1016/j.engappai.2010.06.002 – ident: ref39 doi: 10.1007/3-540-45869-7_21 – ident: ref9 doi: 10.1109/TIE.2019.2931491 – ident: ref10 doi: 10.1109/TIM.2017.2669947 – ident: ref36 doi: 10.1007/978-3-319-93818-9_17 – ident: ref11 doi: 10.1007/s11668-016-0140-z – ident: ref33 doi: 10.3390/s16111798 – volume-title: Introduction to Data Mining year: 2005 ident: ref46 contributor: fullname: Tan – ident: ref34 doi: 10.1007/s12206-007-1010-0 – volume: 2 start-page: 69 volume-title: Advances and Applications of DSmT for Information Fusion: Collected Works year: 2006 ident: ref30 article-title: A new generalization of the proportional conflict redistribution rule stable in terms of decision contributor: fullname: Martin – ident: ref40 doi: 10.1109/ISGTEurope.2013.6695356 – ident: ref6 doi: 10.1109/TASE.2016.2574875 – volume-title: An Introduction to DSmT year: 2009 ident: ref13 contributor: fullname: Dezert – volume-title: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference year: 1988 ident: ref35 contributor: fullname: Pearl – ident: ref44 doi: 10.1016/j.ress.2007.03.012 – start-page: 1300 volume-title: Proc. IEEE 19th Int. Conf. Inf. Fusion (FUSION) ident: ref25 article-title: Efficient subjective Bayesian network belief propagation for trees contributor: fullname: Kaplan – ident: ref42 doi: 10.1515/9780691214696 – ident: ref22 doi: 10.1007/s13198-017-0693-6 – start-page: 2100 volume-title: Proc. IEEE 18th Int. Conf. Inf. Fusion (Fusion) ident: ref48 article-title: Modified PCR rules of combination with degrees of intersections contributor: fullname: Smarandache – ident: ref5 doi: 10.1142/9789813271494_0004 – ident: ref28 doi: 10.1109/PEMWA.2009.5208325 – ident: ref2 doi: 10.1109/TFUZZ.2016.2587325 – ident: ref26 doi: 10.1016/S0031-3203(99)00223-X – ident: ref23 doi: 10.1111/exsy.12077 – ident: ref38 doi: 10.1016/j.envsoft.2006.03.006 – ident: ref8 doi: 10.1109/TII.2017.2695583 – ident: ref16 doi: 10.1016/j.ijar.2008.05.003 – volume: 18 start-page: 61 issue: 1 year: 2005 ident: ref3 article-title: Incremental methods for Bayesian network structure learning publication-title: Artif. Intell. Commun. contributor: fullname: Alcobe – ident: ref29 doi: 10.1109/TASE.2016.2542186 – ident: ref31 doi: 10.1016/j.aap.2016.04.020 – ident: ref49 doi: 10.1049/iet-cvi.2012.0193 – ident: ref24 doi: 10.1007/978-3-319-42337-1 – ident: ref37 doi: 10.1016/j.eswa.2012.07.026 – ident: ref4 doi: 10.1016/j.inffus.2005.07.003 – ident: ref32 doi: 10.1109/ETFA.2013.6647984 – start-page: 165 volume-title: Proc. 13th Conf. Uncertainty Artif. Intell. ident: ref15 article-title: Sequential update of Bayesian network structure contributor: fullname: Friedman – volume: 1 start-page: 330 volume-title: Encyclopedia of Artificial Intelligence year: 1992 ident: ref43 article-title: Dempster-shafer theory contributor: fullname: Shafer – ident: ref7 doi: 10.1109/TPEL.2016.2608842 – ident: ref1 doi: 10.1201/9781351174664-382 – ident: ref47 doi: 10.1016/S0098-1354(02)00161-8 – ident: ref21 doi: 10.1007/978-3-319-28702-7_7 – ident: ref52 doi: 10.1115/1.4032399 |
SSID | ssj0000816898 |
Score | 2.3843143 |
Snippet | Fault diagnosis plays a critical role in maintaining and troubleshooting engineered systems. Various diagnosis models, such as Bayesian networks (BNs), have... |
SourceID | proquest crossref pubmed ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 4300 |
SubjectTerms | Bayes methods Bayesian analysis Expert clustering Fault diagnosis Knowledge engineering Object oriented modeling opinion fusion subjective Bayesian network (SBN) subjective logic (SL) Troubleshooting Uncertainty Wind turbines |
Title | Expert Opinion Fusion Framework Using Subjective Logic for Fault Diagnosis |
URI | https://ieeexplore.ieee.org/document/9254133 https://www.ncbi.nlm.nih.gov/pubmed/33170790 https://www.proquest.com/docview/2677851053 https://search.proquest.com/docview/2459624906 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS-UwFD6oC3EzPkfveJUILlSm19ymbZqlXr2IoG4UdFXSJAUf9MrcdjO_fs5JH4gozKqBhj7OSXK-LzkPgEPuilBybQI09i6InHKBViIPTJwaMkg2MRQ7fHObXD1E14_x4wL87mNhnHPe-cyNqOnP8u3M1LRVdqqQzSCnWoRFqVQTq9Xvp_gCEr70bYiNAFGFbA8xx1yd3k-ezpEMhshR0cgjSFqBZYGmk0tajD9YJF9i5Xu06a3OdBVuuu9tnE1eR3WVj8zfT6kc__eH1uBHCz_ZWTNe1mHBlRuw3k7wOTtqs1Afb8K1T4Jcsbv35xJ1x6b13F86Zy7mnQ0YLjwvzZrJqGyzYQiC2VTXbxW7aLz4nudb8DC9vJ9cBW3hhcCISFWBFdzGRCRSqU3OlYlVwZUwuciRgYQoR4Ow0iaJjtN8LLQtIl5wmxI3HBdxIX7CUjkr3Q4wp6WUbpyHiU0ia6ROlaOMNDbWThVCDuCkE3723uTXyDwv4SojpWWktKxV2gA2SYZ9x1Z8Axh26sraGTjPQsqMR-gRbx_0t3Hu0IGILt2sxj4R1R6KFE8GsN2ouX92Nzp-ff3OXVgJKRDC78cMYan6U7s9hCdVvu_H5T_n5903 |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RKrVcoBQoC7R1pR6gIos3TuL4WGhXW8rSyyLRU-TYjrQFZRGbXPrrmXEeQlWROMVSrDxmbM_32fMA-MxdEUquTYDG3gWRUy7QSuSBiVNDBskmhmKHp5fJ5Co6v46vV-C4j4VxznnnMzekpj_LtwtT01bZiUI2g5zqBbxEXJ0mTbRWv6PiS0j44rchNgLEFbI9xhxxdTI7-32KdDBElopmHmHSGrwSaDy5pOX4kU3yRVaexpve7ow3YNp9ceNucjOsq3xo_v6TzPG5v_QG1lsAyr42I2YTVlz5FjbbKb5kh20e6qMtOPdpkCv2625eovbYuF76S-fOxby7AcOl50-zajIq3GwYwmA21vVtxb41fnzz5TZcjb_PziZBW3ohMCJSVWAFtzFRiVRqk3NlYlVwJUwucuQgIcrRILC0SaLjNB8JbYuIF9ymxA5HRVyIHVgtF6XbBea0lNKN8jCxSWSN1KlylJPGxtqpQsgBfOmEn901GTYyz0y4ykhpGSkta5U2gC2SYd-xFd8ADjp1Ze0cXGYh5cYj_Ii3P_W3cfbQkYgu3aLGPhFVH4oUTwbwrlFz_-xudOz9_50f4fVkNr3ILn5c_tyHtZDCIvzuzAGsVve1e49gpco_-DH6AKUG4II |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expert+Opinion+Fusion+Framework+Using+Subjective+Logic+for+Fault+Diagnosis&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Xu%2C+Peng&rft.au=Cho%2C+Jin-Hee&rft.au=Salado%2C+Alejandro&rft.date=2022-06-01&rft.eissn=2168-2275&rft.volume=52&rft.issue=6&rft.spage=4300&rft.epage=4311&rft_id=info:doi/10.1109%2FTCYB.2020.3025800&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |