Expert Opinion Fusion Framework Using Subjective Logic for Fault Diagnosis

Fault diagnosis plays a critical role in maintaining and troubleshooting engineered systems. Various diagnosis models, such as Bayesian networks (BNs), have been proposed to deal with this kind of problem in the past. However, the diagnosis results may not be reliable if second-order uncertainty is...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 6; pp. 4300 - 4311
Main Authors Xu, Peng, Cho, Jin-Hee, Salado, Alejandro
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fault diagnosis plays a critical role in maintaining and troubleshooting engineered systems. Various diagnosis models, such as Bayesian networks (BNs), have been proposed to deal with this kind of problem in the past. However, the diagnosis results may not be reliable if second-order uncertainty is involved. This article proposes a hierarchical system diagnosis fusion framework that considers the uncertainty based on a belief model, called subjective logic (SL), which explicitly deals with uncertainty representing a lack of evidence. The proposed system diagnosis fusion framework consists of three steps: 1) individual subjective BNs (SBNs) are designed to represent the knowledge architectures of individual experts; 2) experts are clustered as expert groups according to their similarity; and 3) after inferring expert opinions from respective SBNs, the one opinion fusion method was used to combine all opinions to reach a consensus based on the aggregated opinion for system diagnosis. Via extensive simulation experiments, we show that the proposed fusion framework, consisting of two operators, outperforms the state-of-the-art fusion operator counterparts and has stable performance under various scenarios. Our proposed fusion framework is promising for advancing state-of-the-art fault diagnosis of complex engineered systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2168-2267
2168-2275
DOI:10.1109/TCYB.2020.3025800