A new CMOS comparator robust to process and temperature variations for SAR ADC converters
This paper presents a novel comparator being robust to temperature and process variations. The new comparator is confronted to a conventional topology used in most of the Successive Approximations Analog to Digital Converters (SAR ADCs) for biomedical applications. To verify the benefits of the new...
Saved in:
Published in | Analog integrated circuits and signal processing Vol. 90; no. 2; pp. 301 - 308 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents a novel comparator being robust to temperature and process variations. The new comparator is confronted to a conventional topology used in most of the Successive Approximations Analog to Digital Converters (SAR ADCs) for biomedical applications. To verify the benefits of the new comparator, it was designed on a CMOS 65 nm process and characterized with post layout simulations under conditions of process and temperature fluctuations. With the proposed circuit, a SAR ADC exhibits 83.11 dB of Signal to Noise Ratio at 1.28 MS/s and
375
μ
W
of power consumption. The PT variations for critical corners are less than 0.58 bits. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0925-1030 1573-1979 |
DOI: | 10.1007/s10470-016-0916-9 |