Resistive or capacitive charge-division readout for position-sensitive detectors

Two-point charge division is a typical technique for position measurements in linear multi electrode detectors (microstrips, multiwire proportional counters, silicon drift-detector arrays, and scintillators coupled to photodetectors). Only two preamplifiers, located at the right and the left ends of...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on nuclear science Vol. 49; no. 6; pp. 3269 - 3277
Main Authors Pullia, A., Muller, W.F.J., Boiano, C., Bassini, R.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2002
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Two-point charge division is a typical technique for position measurements in linear multi electrode detectors (microstrips, multiwire proportional counters, silicon drift-detector arrays, and scintillators coupled to photodetectors). Only two preamplifiers, located at the right and the left ends of the detection array, are used, each of which receives a fraction of the charge produced by the ionizing event. Position is reconstructed comparing these charge fractions. In principle, either a resistive or a capacitive divider may be used to split the charge. The choice between such two different setups is not obvious. In fact, each of them shows advantages and disadvantages in terms of noise, signal propagation, and linearity. In this paper, we present a unified treatment for the capacitive and the resistive mechanisms of charge division that addresses the issues of this choice. As an example, the realistic setup of the multiwire position-sensitive proportional counter to be used in the TP-MUSIC III chamber of the ALADiN experiment at GSI is considered.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9499
1558-1578
DOI:10.1109/TNS.2002.805521