Memristor-Based Neural Network Circuit With Multimode Generalization and Differentiation on Pavlov Associative Memory

Most of the classical conditioning laws implemented by existing circuits are involved in learning and forgetting between only three neurons, and the problems between multiple neurons are not considered. In this article, a multimode generalization and differentiation circuit for the Pavlov associativ...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 53; no. 5; pp. 1 - 12
Main Authors Sun, Junwei, Wang, Yangyang, Liu, Peng, Wen, Shiping, Wang, Yanfeng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Most of the classical conditioning laws implemented by existing circuits are involved in learning and forgetting between only three neurons, and the problems between multiple neurons are not considered. In this article, a multimode generalization and differentiation circuit for the Pavlov associative memory is proposed based on memristors. The designed circuit is mainly composed of voltage control modules, synaptic neuron modules, and inhibition modules. The secondary differentiation is accomplished through the process of associative learning and forgetting among multiple neurons. The process of multiple generalization and differentiation is realized based on the nonvolatility and thresholding properties of memristors. The extinction inhibition and differentiation inhibition in forgetting is considered through the inhibition modules. The Pavlov associative memory neural network with multimodal generalization and differentiation may provide a reference for the further development of brain-like intelligence.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2022.3200751