SGaze: A Data-Driven Eye-Head Coordination Model for Realtime Gaze Prediction

We present a novel, data-driven eye-head coordination model that can be used for realtime gaze prediction for immersive HMD-based applications without any external hardware or eye tracker. Our model (SGaze) is computed by generating a large dataset that corresponds to different users navigating in v...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on visualization and computer graphics Vol. 25; no. 5; pp. 2002 - 2010
Main Authors Hu, Zhiming, Zhang, Congyi, Li, Sheng, Wang, Guoping, Manocha, Dinesh
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present a novel, data-driven eye-head coordination model that can be used for realtime gaze prediction for immersive HMD-based applications without any external hardware or eye tracker. Our model (SGaze) is computed by generating a large dataset that corresponds to different users navigating in virtual worlds with different lighting conditions. We perform statistical analysis on the recorded data and observe a linear correlation between gaze positions and head rotation angular velocities. We also find that there exists a latency between eye movements and head movements. SGaze can work as a software-based realtime gaze predictor and we formulate a time related function between head movement and eye movement and use that for realtime gaze position prediction. We demonstrate the benefits of SGaze for gaze-contingent rendering and evaluate the results with a user study.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1077-2626
1941-0506
DOI:10.1109/TVCG.2019.2899187