Cellular signaling responses mediated by a novel nucleotide receptor in rabbit microvessel endothelium
The adenine nucleotide, ATP, elicits an elevation in intracellular ionized calcium concentration ([Ca2+]i) and phospholipase C-mediated phosphatidylinositol hydrolysis and stimulates the synthesis of the prostaglandins E2 and I2 in cultured endothelial cells derived from rabbit cardiac muscle. Use o...
Saved in:
Published in | The American journal of physiology Vol. 265; no. 2 Pt 2; p. H675 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.08.1993
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | The adenine nucleotide, ATP, elicits an elevation in intracellular ionized calcium concentration ([Ca2+]i) and phospholipase C-mediated phosphatidylinositol hydrolysis and stimulates the synthesis of the prostaglandins E2 and I2 in cultured endothelial cells derived from rabbit cardiac muscle. Use of various ATP analogues indicated that these events did not fit the classical definition of P1 or P2 purinergic receptors and, furthermore, indicated that the receptor(s) mediating these activities was not specific for purines. The rank order of agonist potency on prostaglandin release, elevations in [Ca2+]i, and inositol phosphate response was UTP > or = ATP > ADP > ADP[beta]S = 2-methylthio ATP > adenosine, suggesting that these three cellular responses are coupled to the same or similar receptors. However, the sensitivity of these three cellular responses to added nucleotides was somewhat different. The half-maximum effective concentration (EC50) for ATP stimulation of prostaglandin release was 100 microM, for inositol phosphate turnover it was 25 microM, and for elevations in [Ca2+]i it was < 1 microM. Similar discrepancies in EC50 UTP values for these three cellular responses were also noted. These observations indicate that purine and pyrimidine nucleotides elicit at least three cellular responses in rabbit cardiac muscle microvessel endothelial cells, all demonstrating similar rank orders of potency. However, the differences in EC50 suggest that if these responses are mediated by a single receptor type, it exhibits divergent coupling to various cellular signaling pathways. |
---|---|
ISSN: | 0002-9513 |
DOI: | 10.1152/ajpheart.1993.265.2.H675 |