Stability and Stabilization of T-S Fuzzy Systems With Time-Varying Delays via Delay-Product-Type Functional Method

This paper is concerned with the stability and stabilization problems of T-S fuzzy systems with time-varying delays. The purpose is to develop a new state-feedback controller design method with less conservatism. First, a novel Lyapunov-Krasovskii functional is constructed by combining delay-product...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 50; no. 6; pp. 2580 - 2589
Main Authors Lian, Zhi, He, Yong, Zhang, Chuan-Ke, Wu, Min
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper is concerned with the stability and stabilization problems of T-S fuzzy systems with time-varying delays. The purpose is to develop a new state-feedback controller design method with less conservatism. First, a novel Lyapunov-Krasovskii functional is constructed by combining delay-product-type functional method together with the state vector augmentation. By utilizing Wirtinger-based integral inequality and an extended reciprocally convex matrix inequality, a less conservative delay-dependent stability condition is developed. Then, the corresponding controller design method for the closed-loop delayed fuzzy system is derived based on parallel distributed compensation scheme. Finally, two classic numerical examples are given to show the effectiveness and merits of the proposed approaches.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2168-2267
2168-2275
DOI:10.1109/TCYB.2018.2890425