Sub-keV corrections to binary encounter cross section models for electron ionization of liquid water with application to the Geant4-DNA Monte Carlo code

The electron ionization cross section of water is one of the most important input in Monte Carlo studies of cellular radiobiological effects. Analytical cross section models of the binary-encounter type have the potential of reducing simulation time and facilitate application to a variety of biologi...

Full description

Saved in:
Bibliographic Details
Published inApplied radiation and isotopes Vol. 194; p. 110693
Main Authors Margis, Stefanos, Kyriakou, Ioanna, Incerti, Sebastien, Bordage, Marie-Claude, Emfietzoglou, Dimitris
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.04.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The electron ionization cross section of water is one of the most important input in Monte Carlo studies of cellular radiobiological effects. Analytical cross section models of the binary-encounter type have the potential of reducing simulation time and facilitate application to a variety of biological materials (other than water). The Binary-Encounter-Bethe (BEB) and Binary-Encounter-Dipole (BED) models of NIST are perhaps the most popular of such models giving reliable results for atoms and molecules in the gas-phase over a wide energy range. However, the use of such models to sub-keV electron energies in liquid water raises concerns due to the neglect of condensed phase effects that leads to a significant overestimation when compared to medium-specific dielectric models. To modify the BEB and BED models towards better agreement with the recommended low-energy dielectric model of Geant4-DNA (Option 4). To implement the new modifications to the existing BEB model of the Option 6 physics constructor of Geant4-DNA and re-evaluate fundamental transport quantities for sub-keV electrons. In analogy to a Yukawa potential a simple, yet physically-motivated, modification of the Burgess correction term is proposed to account for the reduction of the Coulomb interaction due to the polarizability of the target. The magnitude of the correction is guided by the dielectric-based ionization cross section implemented in Option 4. Differential, total and stopping ionization cross sections for low-energy electrons in liquid water are presented. When combined with the Vriens correction (which is not included in Option 6), the proposed modification to the BEB and BED models brings the ionization and stopping cross sections in much better agreement against those used in the Option 4 dielectric model of Geant4-DNA, with up to 30% and 10% deviation, respectively. Implementation of the new correction to the Option 6 constructor of Geant4-DNA and re-evaluation of fundamental transport quantities, such as electron penetration ranges and dose-point-kernels, reduced the discrepancies from Option 4 at sub-keV energies from 20 to 100% (or more) to well below 10% in most cases. A simple modification to the BEB and BED analytic models was found to improve their performance for sub-keV electrons in liquid water medium. Implementation of the new modification to the Option 6 constructor of Geant4-DNA significantly improved the agreement with the recommended low-energy Option 4 constructor for a variety of fundamental quantities related to electron transport. •The application of the BEB and BED atomic models to electron ionizations in liquid water is studied.•A simple modification is proposed to improve their performance for sub-keV electrons.•Implementation to the Option 6 constructor of Geant4-DNA significantly improves low-energy electron transport.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0969-8043
1872-9800
DOI:10.1016/j.apradiso.2023.110693