Strengthening of Porcelain Provided by Resin Cements and Flowable Composites

This study evaluated the effect of mechanical properties of resin-based luting agents on the strength of resin-coated porcelain. The luting agents tested were two flowable resin composites (Filtek Z350 Flow and Tetric-N Flow), a light-cured resin cement (Variolink Veneer [VV]), and a dual-cured resi...

Full description

Saved in:
Bibliographic Details
Published inOperative dentistry Vol. 41; no. 2; p. 179
Main Authors Spazzin, A O, Guarda, G B, Oliveira-Ogliari, A, Leal, F B, Correr-Sobrinho, L, Moraes, R R
Format Journal Article
LanguageEnglish
Published United States 01.03.2016
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:This study evaluated the effect of mechanical properties of resin-based luting agents on the strength of resin-coated porcelain. The luting agents tested were two flowable resin composites (Filtek Z350 Flow and Tetric-N Flow), a light-cured resin cement (Variolink Veneer [VV]), and a dual-cured resin cement (Variolink II) in either light-cured (base paste) or dual-cured (base + catalyst pastes [VD]) mode. Flexural strength (σf) and modulus of elasticity (Ef) of the luting agents were measured in three-point bending mode (n=5). Porcelain discs (Vita VM7) were tested either untreated (control) or acid etched, silanized, and coated with the luting agents. Biaxial flexural strength (σbf) of the porcelain discs was tested using a ball-on-ring setup (n=30). The σbf of the resin-coated specimens was calculated at z-axial positions for multilayer specimens in the ball-on-ring test: position z = 0 (ceramic surface at the bonded interface) and position z = -t2 (luting agent surface above ring). The σf and Ef data were subjected to analysis of variance and the Student-Newman-Keuls test (α=0.05). A Weibull analysis was performed for σbf data. Weibull modulus (m) and characteristic strength (σ0) were calculated. Linear regression analyses investigated the relationship between mechanical properties of the luting agents and the strengthening of porcelain. VD had higher and VV had lower mechanical strength than the other materials. At z = 0, all resin-coated groups had higher σbf than the control group. No significant differences between the luting agents were observed for σbf and σ0. At z = -t2, VD had the highest σbf and σ0, whereas VV had the poorest results. No significant differences in m were observed across groups. A linear increase in flexural strength of the porcelain was associated with increased σf and Ef of the luting agents at position z = -t2. In conclusion, resin coating and use of luting agents with better physical properties generally improved the mechanical performance of porcelain.
ISSN:1559-2863
DOI:10.2341/15-025-l