Unsupervised Gait Phase Estimation With Domain-Adversarial Neural Network and Adaptive Window
The performanceof previous machine learning models for gait phase is only satisfactory under limited conditions. First, they produce accurate estimations only when the ground truth of the gait phase (of the target subject) is known. In contrast, when the ground truth of a target subject is not used...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 26; no. 7; pp. 3373 - 3384 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The performanceof previous machine learning models for gait phase is only satisfactory under limited conditions. First, they produce accurate estimations only when the ground truth of the gait phase (of the target subject) is known. In contrast, when the ground truth of a target subject is not used to train an algorithm, the estimation error noticeably increases. Expensive equipment is required to precisely measure the ground truth of the gait phase. Thus, previous methods have practical shortcoming when they are optimized for individual users. To address this problem, this study introduces an unsupervised domain adaptation technique for estimation without the true gait phase of the target subject. Specifically, a domain-adversarial neural network was modified to perform regression on continuous gait phases. Second, the accuracy of previous models can be degraded by variations in stride time. To address this problem, this study developed an adaptive window method that actively considers changes in stride time. This model considerably reduces estimation errors for walking and running motions. Finally, this study proposed a new method to select the optimal source subject (among several subjects) by defining the similarity between sequential embedding features. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2168-2194 2168-2208 2168-2208 |
DOI: | 10.1109/JBHI.2021.3137413 |