Cerebral anoxia tolerance in turtles: regulation of intracellular calcium and pH

To investigate mechanisms of cerebral anoxia tolerance, cerebrocortical intracellular calcium ([Ca2+]i) and pH (pHi) regulation were compared in turtles (Trachemys scripta) and laboratory rats. [Ca2+]i and pHi in living 200 to 300-microns-thick cortical brain slices were measured with the fluorescen...

Full description

Saved in:
Bibliographic Details
Published inThe American journal of physiology Vol. 263; no. 6 Pt 2; p. R1298
Main Author Bickler, P E
Format Journal Article
LanguageEnglish
Published United States 01.12.1992
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:To investigate mechanisms of cerebral anoxia tolerance, cerebrocortical intracellular calcium ([Ca2+]i) and pH (pHi) regulation were compared in turtles (Trachemys scripta) and laboratory rats. [Ca2+]i and pHi in living 200 to 300-microns-thick cortical brain slices were measured with the fluorescent indicators fura-2/acetoxymethyl ester (AM) and 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein during exposure to anoxia. Within 5 min, [Ca2+]i increased to > 1,000 nM in rat brain slices exposed to anoxia but [Ca2+]i was normal even after 5 h of anoxia in turtles. ATP levels remained normal in anoxic turtle brain but fell rapidly in rats. During anoxia, pHi fell by 0.25 +/- 0.08 pH units in rats but only 0.10 +/- 0.04 in turtles (P < 0.05). Inhibition of glycolysis in anoxic turtle brain with iodoacetate resulted in large increases in [Ca2+]i but prior exposure of slices to anoxia resulted in greatly attenuated calcium entry. The reduction in calcium flux was greater with increasing exposure to anoxia, suggesting progressive arrest of calcium channel activity. Tolerance of cerebral anoxia in turtles may be related to anaerobic ATP production, arrest of calcium channels, and attenuation of changes in pHi.
ISSN:0002-9513
DOI:10.1152/ajpregu.1992.263.6.r1298