NN Reinforcement Learning Adaptive Control for a Class of Nonstrict-Feedback Discrete-Time Systems
This article investigates an adaptive reinforcement learning (RL) optimal control design problem for a class of nonstrict-feedback discrete-time systems. Based on the neural network (NN) approximating ability and RL control design technique, an adaptive backstepping RL optimal controller and a minim...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 50; no. 11; pp. 4573 - 4584 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This article investigates an adaptive reinforcement learning (RL) optimal control design problem for a class of nonstrict-feedback discrete-time systems. Based on the neural network (NN) approximating ability and RL control design technique, an adaptive backstepping RL optimal controller and a minimal learning parameter (MLP) adaptive RL optimal controller are developed by establishing a novel strategic utility function and introducing external function terms. It is proved that the proposed adaptive RL optimal controllers can guarantee that all signals in the closed-loop systems are semiglobal uniformly ultimately bounded (SGUUB). The main feature is that the proposed schemes can solve the optimal control problem that the previous literature cannot deal with. Furthermore, the proposed MPL adaptive optimal control scheme can reduce the number of adaptive laws, and thus the computational complexity is decreased. Finally, the simulation results illustrate the validity of the proposed optimal control schemes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2168-2267 2168-2275 2168-2275 |
DOI: | 10.1109/TCYB.2020.2963849 |