Accuracy analysis and optimization of the method of auxiliary sources (MAS) for scattering by a circular cylinder

This paper presents a rigorous accuracy analysis of the method of auxiliary sources (MAS), when applied to scattering problems. A benchmark, canonical geometry, consisting of a perfectly conducting, infinite, circular cylinder, is chosen for clarity and simplicity. For this particular structure it i...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on antennas and propagation Vol. 52; no. 6; pp. 1541 - 1547
Main Authors Anastassiu, H.T., Lymperopoulos, D.G., Kaklamani, D.I.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a rigorous accuracy analysis of the method of auxiliary sources (MAS), when applied to scattering problems. A benchmark, canonical geometry, consisting of a perfectly conducting, infinite, circular cylinder, is chosen for clarity and simplicity. For this particular structure it is shown that the MAS square matrix can be inverted analytically, yielding exact mathematical expressions for the discretization error and the condition number of the pertinent linear system. It is also demonstrated that the error increases very abruptly for source locations associated with the characteristic eigenvalues of the scattering geometry, precisely as predicted in theory. Various plots depict comparisons between analytical and computational data for the boundary condition error, and all occurring discrepancies are fully explained. Among several important results of the analysis, the fundamental MAS question concerning the optimal location of the auxiliary sources is thoroughly investigated and resolved on the grounds of error minimization.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2004.830264