Proportional-Integral Observer Design for Multirate-Networked Systems Under Constrained Bit Rate: An Encoding-Decoding Mechanism

In this article, the proportional-integral observer design problem is studied for a class of multirate networked systems subject to constrained bit rate. The sensor sampling period is allowed to be different from the system updating period and, to facilitate the observer design, the underlying multi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 53; no. 7; pp. 4280 - 4291
Main Authors Zhao, Di, Wang, Zidong, Wang, Licheng, Wei, Guoliang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article, the proportional-integral observer design problem is studied for a class of multirate networked systems subject to constrained bit rate. The sensor sampling period is allowed to be different from the system updating period and, to facilitate the observer design, the underlying multirate system is cast into a general single-rate one by resorting to the lifting technique. In order to curb the communication burden and promote the data security, the encoding-decoding procedure is implemented on the sensor-to-observer channel to convert the measurement signals into binary codewords. A sufficient condition is first proposed to reveal the fundamental relationship between the bit-rate constraints and the decoding accuracy, and then the exponentially ultimate boundedness of the error dynamics is assessed with the aid of the Lyapunov method. Subsequently, the desired observer gains are determined by solving two optimization problems with the aim to achieve two distinct performance indices, namely, the smallest ultimate bound and the fastest decay rate. Finally, the validity of the developed observer design approach is thoroughly demonstrated via the simulation examples.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2022.3165041