Certifying convergence of Lasserre’s hierarchy via flat truncation
Consider the optimization problem of minimizing a polynomial function subject to polynomial constraints. A typical approach for solving it globally is applying Lasserre’s hierarchy of semidefinite relaxations, based on either Putinar’s or Schmüdgen’s Positivstellensatz. A practical question in appli...
Saved in:
Published in | Mathematical programming Vol. 142; no. 1-2; pp. 485 - 510 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2013
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0025-5610 1436-4646 |
DOI | 10.1007/s10107-012-0589-9 |
Cover
Loading…
Summary: | Consider the optimization problem of minimizing a polynomial function subject to polynomial constraints. A typical approach for solving it globally is applying Lasserre’s hierarchy of semidefinite relaxations, based on either Putinar’s or Schmüdgen’s Positivstellensatz. A practical question in applications is: how to certify its convergence and get minimizers? In this paper, we propose
flat truncation
as a certificate for this purpose. Assume the set of global minimizers is nonempty and finite. Our main results are: (1) Putinar type Lasserre’s hierarchy has finite convergence if and only if flat truncation holds, under some generic assumptions; the same conclusion holds for the Schmüdgen type one under weaker assumptions. (2) Flat truncation is asymptotically satisfied for Putinar type Lasserre’s hierarchy if the archimedean condition holds; the same conclusion holds for the Schmüdgen type one if the feasible set is compact. (3) We show that flat truncation can be used as a certificate to check exactness of standard SOS relaxations and Jacobian SDP relaxations. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
ISSN: | 0025-5610 1436-4646 |
DOI: | 10.1007/s10107-012-0589-9 |