Certifying convergence of Lasserre’s hierarchy via flat truncation

Consider the optimization problem of minimizing a polynomial function subject to polynomial constraints. A typical approach for solving it globally is applying Lasserre’s hierarchy of semidefinite relaxations, based on either Putinar’s or Schmüdgen’s Positivstellensatz. A practical question in appli...

Full description

Saved in:
Bibliographic Details
Published inMathematical programming Vol. 142; no. 1-2; pp. 485 - 510
Main Author Nie, Jiawang
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2013
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0025-5610
1436-4646
DOI10.1007/s10107-012-0589-9

Cover

Loading…
More Information
Summary:Consider the optimization problem of minimizing a polynomial function subject to polynomial constraints. A typical approach for solving it globally is applying Lasserre’s hierarchy of semidefinite relaxations, based on either Putinar’s or Schmüdgen’s Positivstellensatz. A practical question in applications is: how to certify its convergence and get minimizers? In this paper, we propose flat truncation as a certificate for this purpose. Assume the set of global minimizers is nonempty and finite. Our main results are: (1) Putinar type Lasserre’s hierarchy has finite convergence if and only if flat truncation holds, under some generic assumptions; the same conclusion holds for the Schmüdgen type one under weaker assumptions. (2) Flat truncation is asymptotically satisfied for Putinar type Lasserre’s hierarchy if the archimedean condition holds; the same conclusion holds for the Schmüdgen type one if the feasible set is compact. (3) We show that flat truncation can be used as a certificate to check exactness of standard SOS relaxations and Jacobian SDP relaxations.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-012-0589-9