Certifying convergence of Lasserre’s hierarchy via flat truncation

Consider the optimization problem of minimizing a polynomial function subject to polynomial constraints. A typical approach for solving it globally is applying Lasserre’s hierarchy of semidefinite relaxations, based on either Putinar’s or Schmüdgen’s Positivstellensatz. A practical question in appli...

Full description

Saved in:
Bibliographic Details
Published inMathematical programming Vol. 142; no. 1-2; pp. 485 - 510
Main Author Nie, Jiawang
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2013
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0025-5610
1436-4646
DOI10.1007/s10107-012-0589-9

Cover

Abstract Consider the optimization problem of minimizing a polynomial function subject to polynomial constraints. A typical approach for solving it globally is applying Lasserre’s hierarchy of semidefinite relaxations, based on either Putinar’s or Schmüdgen’s Positivstellensatz. A practical question in applications is: how to certify its convergence and get minimizers? In this paper, we propose flat truncation as a certificate for this purpose. Assume the set of global minimizers is nonempty and finite. Our main results are: (1) Putinar type Lasserre’s hierarchy has finite convergence if and only if flat truncation holds, under some generic assumptions; the same conclusion holds for the Schmüdgen type one under weaker assumptions. (2) Flat truncation is asymptotically satisfied for Putinar type Lasserre’s hierarchy if the archimedean condition holds; the same conclusion holds for the Schmüdgen type one if the feasible set is compact. (3) We show that flat truncation can be used as a certificate to check exactness of standard SOS relaxations and Jacobian SDP relaxations.
AbstractList Consider the optimization problem of minimizing a polynomial function subject to polynomial constraints. A typical approach for solving it globally is applying Lasserre’s hierarchy of semidefinite relaxations, based on either Putinar’s or Schmüdgen’s Positivstellensatz. A practical question in applications is: how to certify its convergence and get minimizers? In this paper, we propose flat truncation as a certificate for this purpose. Assume the set of global minimizers is nonempty and finite. Our main results are: (1) Putinar type Lasserre’s hierarchy has finite convergence if and only if flat truncation holds, under some generic assumptions; the same conclusion holds for the Schmüdgen type one under weaker assumptions. (2) Flat truncation is asymptotically satisfied for Putinar type Lasserre’s hierarchy if the archimedean condition holds; the same conclusion holds for the Schmüdgen type one if the feasible set is compact. (3) We show that flat truncation can be used as a certificate to check exactness of standard SOS relaxations and Jacobian SDP relaxations.
Consider the optimization problem of minimizing a polynomial function subject to polynomial constraints. A typical approach for solving it globally is applying Lasserre's hierarchy of semidefinite relaxations, based on either Putinar's or Schmuedgen's Positivstellensatz. A practical question in applications is: how to certify its convergence and get minimizers? In this paper, we propose flat truncation as a certificate for this purpose. Assume the set of global minimizers is nonempty and finite. Our main results are: (1) Putinar type Lasserre's hierarchy has finite convergence if and only if flat truncation holds, under some generic assumptions; the same conclusion holds for the Schmuedgen type one under weaker assumptions. (2) Flat truncation is asymptotically satisfied for Putinar type Lasserre's hierarchy if the archimedean condition holds; the same conclusion holds for the Schmuedgen type one if the feasible set is compact. (3) We show that flat truncation can be used as a certificate to check exactness of standard SOS relaxations and Jacobian SDP relaxations.
Consider the optimization problem of minimizing a polynomial function subject to polynomial constraints. A typical approach for solving it globally is applying Lasserre's hierarchy of semidefinite relaxations, based on either Putinar's or Schmüdgen's Positivstellensatz. A practical question in applications is: how to certify its convergence and get minimizers? In this paper, we propose flat truncation as a certificate for this purpose. Assume the set of global minimizers is nonempty and finite. Our main results are: (1) Putinar type Lasserre's hierarchy has finite convergence if and only if flat truncation holds, under some generic assumptions; the same conclusion holds for the Schmüdgen type one under weaker assumptions. (2) Flat truncation is asymptotically satisfied for Putinar type Lasserre's hierarchy if the archimedean condition holds; the same conclusion holds for the Schmüdgen type one if the feasible set is compact. (3) We show that flat truncation can be used as a certificate to check exactness of standard SOS relaxations and Jacobian SDP relaxations.[PUBLICATION ABSTRACT]
Author Nie, Jiawang
Author_xml – sequence: 1
  givenname: Jiawang
  surname: Nie
  fullname: Nie, Jiawang
  email: njw@math.ucsd.edu
  organization: Department of Mathematics, University of California, San Diego
BookMark eNp9kL1OwzAQgC0EEm3hAdgisbAEzrEdxyMqv1IlFpgt1zkXo9QpdorUjdfg9XgSUsKAKsF0y_ed7r4x2Q9tQEJOKJxTAHmRKFCQOdAiB1GpXO2REeWszHnJy30yAihELkoKh2Sc0gsAUFZVI3I1xdh5t_Fhkdk2vGFcYLCYtS6bmZQwRvx8_0jZs8doon3eZG_eZK4xXdbFdbCm8204IgfONAmPf-aEPN1cP07v8tnD7f30cpZbxlWXG0WZoxVYxdCiMAJ4xee05lQWlXPzcl4XUHNnDWIpaim5ExUTrKyVYdRYNiFnw95VbF_XmDq99Mli05iA7TppyqUQXAKHHj3dQV_adQz9dT3FlSokMNlTcqBsbFOK6LT13fdLXTS-0RT0tq4e6uq-rt7W1ao36Y65in5p4uZfpxic1LNhgfHXTX9KXzNLjso
CODEN MHPGA4
CitedBy_id crossref_primary_10_1007_s40305_021_00347_8
crossref_primary_10_1016_j_jsc_2018_06_018
crossref_primary_10_1007_s10589_017_9973_y
crossref_primary_10_1016_j_laa_2015_08_002
crossref_primary_10_3934_jimo_2021030
crossref_primary_10_1080_10556788_2019_1649672
crossref_primary_10_1007_s10107_021_01739_7
crossref_primary_10_1007_s10589_019_00066_0
crossref_primary_10_1007_s10898_023_01313_9
crossref_primary_10_1007_s11425_017_9437_2
crossref_primary_10_1007_s10107_014_0797_6
crossref_primary_10_1007_s10898_017_0592_z
crossref_primary_10_1360_SSM_2020_0137
crossref_primary_10_1007_s10107_022_01878_5
crossref_primary_10_1016_j_automatica_2014_12_007
crossref_primary_10_1137_22M1539137
crossref_primary_10_1137_15M1052172
crossref_primary_10_1137_22M1515689
crossref_primary_10_1137_21M1456285
crossref_primary_10_1007_s10589_025_00657_0
crossref_primary_10_1109_TIT_2016_2619368
crossref_primary_10_1007_s10589_019_00141_6
crossref_primary_10_1007_s10589_019_00145_2
crossref_primary_10_1007_s10107_014_0845_2
crossref_primary_10_1007_s10208_014_9225_9
crossref_primary_10_1137_20M1352375
crossref_primary_10_1287_moor_2022_0334
crossref_primary_10_1137_18M1225677
crossref_primary_10_3934_naco_2024054
crossref_primary_10_1007_s10107_018_1276_2
crossref_primary_10_1007_s10898_013_0047_0
crossref_primary_10_1360_SSM_2024_0129
crossref_primary_10_1016_j_amc_2021_126866
crossref_primary_10_1007_s10107_016_1043_1
crossref_primary_10_1007_s10589_019_00159_w
crossref_primary_10_1007_s10589_024_00602_7
crossref_primary_10_1016_j_laa_2020_06_007
crossref_primary_10_1080_03081087_2021_1965078
crossref_primary_10_1007_s10589_013_9612_1
crossref_primary_10_1016_j_jsc_2023_102241
crossref_primary_10_1007_s40305_023_00491_3
crossref_primary_10_1080_10556788_2015_1121489
crossref_primary_10_1016_j_jsc_2024_102403
crossref_primary_10_1137_17M115308X
crossref_primary_10_1007_s10957_019_01568_x
crossref_primary_10_1016_j_ejco_2021_100012
crossref_primary_10_1109_LRA_2024_3360809
crossref_primary_10_1137_23M1614808
crossref_primary_10_1016_j_orl_2013_11_005
crossref_primary_10_1007_s10208_021_09526_8
crossref_primary_10_1007_s10589_020_00242_7
crossref_primary_10_1007_s10589_020_00248_1
crossref_primary_10_1007_s10898_020_00969_x
crossref_primary_10_1137_15M1018514
crossref_primary_10_1080_10556788_2018_1439489
crossref_primary_10_1007_s10589_021_00311_5
crossref_primary_10_1007_s10589_024_00635_y
crossref_primary_10_1007_s11425_014_4959_z
crossref_primary_10_1007_s11590_021_01708_1
crossref_primary_10_1007_s10898_023_01321_9
crossref_primary_10_1007_s10589_019_00162_1
crossref_primary_10_1007_s10915_023_02138_0
crossref_primary_10_1080_10556788_2018_1528251
crossref_primary_10_1007_s10107_017_1167_y
crossref_primary_10_1137_16M1068992
crossref_primary_10_1137_130919490
crossref_primary_10_1137_15100360X
crossref_primary_10_1007_s10915_022_02063_8
crossref_primary_10_1109_TAC_2014_2351695
crossref_primary_10_1137_23M1605430
crossref_primary_10_1007_s10589_022_00361_3
crossref_primary_10_1137_140962292
crossref_primary_10_1007_s10898_020_00954_4
crossref_primary_10_1287_moor_2023_0200
Cites_doi 10.1137/S1052623403431779
10.1080/10556780802699201
10.1007/s10208-007-9004-y
10.1512/iumj.1993.42.42045
10.1007/s10107-005-0672-6
10.1007/s10107-004-0561-4
10.1080/10556789908805766
10.1142/p665
10.1090/S0002-9947-99-02522-2
10.1007/10997703_15
10.1016/j.jco.2006.07.002
10.1007/BF01446568
10.1137/080716670
10.1007/978-3-662-03718-8
10.1137/S1052623400366802
10.1007/978-0-387-09686-5_7
ContentType Journal Article
Copyright Springer and Mathematical Optimization Society 2012
Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2013
Copyright_xml – notice: Springer and Mathematical Optimization Society 2012
– notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2013
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s10107-012-0589-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest_ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database (ProQuest)
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
Computer and Information Systems Abstracts
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 510
ExternalDocumentID 3123847181
10_1007_s10107_012_0589_9
Genre Feature
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
Q9U
PUEGO
ID FETCH-LOGICAL-c349t-a913f180c93ece5a50484b1d41728ffb6bd20d4fcaee65d774f583536d9a31ac3
IEDL.DBID 8FG
ISSN 0025-5610
IngestDate Fri Sep 05 14:48:59 EDT 2025
Fri Jul 25 19:51:11 EDT 2025
Tue Jul 01 03:42:29 EDT 2025
Thu Apr 24 23:01:44 EDT 2025
Fri Feb 21 02:32:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Semidefinite program
65K05
Sum of squares
90C22
Preordering
Quadratic module
Flat truncation
Lasserre’s hierarchy
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-a913f180c93ece5a50484b1d41728ffb6bd20d4fcaee65d774f583536d9a31ac3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1449927037
PQPubID 25307
PageCount 26
ParticipantIDs proquest_miscellaneous_1475547040
proquest_journals_1449927037
crossref_citationtrail_10_1007_s10107_012_0589_9
crossref_primary_10_1007_s10107_012_0589_9
springer_journals_10_1007_s10107_012_0589_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20131200
2013-12-00
20131201
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 20131200
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2013
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References LaurentMPutinarMSullivantSSums of squares, moment matrices and optimization over polynomialsEmerging Applications of Algebraic Geometry, vol. 149 of IMA Volumes in Mathematics and its Applications2009BerlinSpringer15727010.1007/978-0-387-09686-5_7
Henrion, D., Lasserre, J.: Detecting global optimality and extracting solutions in GloptiPoly. In: Positive Polynomials in Control. Lecture Notes in Control and Information Science vol. 312, pp. 293–310. Springer, Berlin (2005)
BochnakJCosteMRoyM-FReal Algebraic Geometry1998BerlinSpringer0912.14023
LaurentMSemidefinite representations for finite varietiesMath. Program.2007109126229159010.1007/s10107-004-0561-41152.90007
SchmüdgenKThe K-moment problem for compact semialgebraic setsMath. Ann.1991289203206109217310.1007/BF014465680744.44008
LasserreJBMoments, Positive Polynomials and Their Applications2009LondonImperial College Press10.1142/p665
PutinarMPositive polynomials on compact semi-algebraic setsInd. Univ. Math. J.199342969984125412810.1512/iumj.1993.42.420450796.12002
ConwayJBA Course in Functional Analysis1990BerlinSpringer0706.46003
SturmJFSeDuMi 1.02: A MATLAB toolbox for optimization over symmetric conesOptim. Methods Softw.199911&12625653177843310.1080/10556789908805766
LasserreJBLaurentMRostalskiPSemidefinite characterization and computation of zero-dimensional real radical idealsFound. Comput. Math.20088607647244309110.1007/s10208-007-9004-y1176.14010
SchweighoferMOptimization of polynomials on compact semialgebraic setsSIAM J. Optim.2005153805825214286110.1137/S10526234034317791114.90098
LasserreJBGlobal optimization with polynomials and the problem of momentsSIAM J. Optim.2001113796817181404510.1137/S10526234003668021010.90061
NieJSchweighoferMOn the complexity of Putinar’s PositivstellensatzJ. Complex.200723135150229701910.1016/j.jco.2006.07.0021143.13028
ScheidererCSums of squares of regular functions on real algebraic varietiesTrans. Am. Math. Soc.199935210391069167523010.1090/S0002-9947-99-02522-2
Nie, J.: An exact Jacobian SDP relaxation for polynomial optimization. Math. Program. Ser. A (to appear)
HenrionD.LasserreJ.LoefbergJ.GloptiPoly 3: moments, optimization and semidefinite programmingOptim. Methods Softw.2009244–5761779
NieJRanestadKAlgebraic degree of polynomial optimizationSIAM J. Optim.2009201485502250713310.1137/0807166701190.14051
NieJDemmelJSturmfelsBMinimizing polynomials via sum of squares over the gradient idealMath. Program. Ser. A20061063587606221679710.1007/s10107-005-0672-61134.90032
CurtoRFialkowLTruncated K-moment problems in several variablesJ. Oper. Theory20055418922621688671119.47304
Helton, J.W., Nie, J.: A semidefinite approach for truncated K-moment problem, (2011). [Preprint]
ParriloPASturmfelsBBasuSGonzalez-VegaLMinimizing polynomial functionsAlgorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science, vol. 60 of DIMACS Series in Discrete Mathematics and Computer Science2003ProvidenceAMS8399
JF Sturm (589_CR21) 1999; 11&12
M Putinar (589_CR17) 1993; 42
589_CR15
C Scheiderer (589_CR18) 1999; 352
JB Lasserre (589_CR7) 2008; 8
K Schmüdgen (589_CR19) 1991; 289
J Bochnak (589_CR1) 1998
J Nie (589_CR13) 2007; 23
J Nie (589_CR14) 2009; 20
589_CR5
589_CR4
M Schweighofer (589_CR20) 2005; 15
589_CR6
JB Lasserre (589_CR8) 2001; 11
R Curto (589_CR3) 2005; 54
JB Lasserre (589_CR9) 2009
M Laurent (589_CR10) 2007; 109
M Laurent (589_CR11) 2009
PA Parrilo (589_CR16) 2003
JB Conway (589_CR2) 1990
J Nie (589_CR12) 2006; 106
References_xml – reference: NieJSchweighoferMOn the complexity of Putinar’s PositivstellensatzJ. Complex.200723135150229701910.1016/j.jco.2006.07.0021143.13028
– reference: BochnakJCosteMRoyM-FReal Algebraic Geometry1998BerlinSpringer0912.14023
– reference: ConwayJBA Course in Functional Analysis1990BerlinSpringer0706.46003
– reference: CurtoRFialkowLTruncated K-moment problems in several variablesJ. Oper. Theory20055418922621688671119.47304
– reference: ParriloPASturmfelsBBasuSGonzalez-VegaLMinimizing polynomial functionsAlgorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science, vol. 60 of DIMACS Series in Discrete Mathematics and Computer Science2003ProvidenceAMS8399
– reference: ScheidererCSums of squares of regular functions on real algebraic varietiesTrans. Am. Math. Soc.199935210391069167523010.1090/S0002-9947-99-02522-2
– reference: NieJRanestadKAlgebraic degree of polynomial optimizationSIAM J. Optim.2009201485502250713310.1137/0807166701190.14051
– reference: PutinarMPositive polynomials on compact semi-algebraic setsInd. Univ. Math. J.199342969984125412810.1512/iumj.1993.42.420450796.12002
– reference: Henrion, D., Lasserre, J.: Detecting global optimality and extracting solutions in GloptiPoly. In: Positive Polynomials in Control. Lecture Notes in Control and Information Science vol. 312, pp. 293–310. Springer, Berlin (2005)
– reference: LaurentMPutinarMSullivantSSums of squares, moment matrices and optimization over polynomialsEmerging Applications of Algebraic Geometry, vol. 149 of IMA Volumes in Mathematics and its Applications2009BerlinSpringer15727010.1007/978-0-387-09686-5_7
– reference: SturmJFSeDuMi 1.02: A MATLAB toolbox for optimization over symmetric conesOptim. Methods Softw.199911&12625653177843310.1080/10556789908805766
– reference: NieJDemmelJSturmfelsBMinimizing polynomials via sum of squares over the gradient idealMath. Program. Ser. A20061063587606221679710.1007/s10107-005-0672-61134.90032
– reference: LasserreJBLaurentMRostalskiPSemidefinite characterization and computation of zero-dimensional real radical idealsFound. Comput. Math.20088607647244309110.1007/s10208-007-9004-y1176.14010
– reference: Helton, J.W., Nie, J.: A semidefinite approach for truncated K-moment problem, (2011). [Preprint]
– reference: SchweighoferMOptimization of polynomials on compact semialgebraic setsSIAM J. Optim.2005153805825214286110.1137/S10526234034317791114.90098
– reference: HenrionD.LasserreJ.LoefbergJ.GloptiPoly 3: moments, optimization and semidefinite programmingOptim. Methods Softw.2009244–5761779
– reference: Nie, J.: An exact Jacobian SDP relaxation for polynomial optimization. Math. Program. Ser. A (to appear)
– reference: LaurentMSemidefinite representations for finite varietiesMath. Program.2007109126229159010.1007/s10107-004-0561-41152.90007
– reference: LasserreJBGlobal optimization with polynomials and the problem of momentsSIAM J. Optim.2001113796817181404510.1137/S10526234003668021010.90061
– reference: SchmüdgenKThe K-moment problem for compact semialgebraic setsMath. Ann.1991289203206109217310.1007/BF014465680744.44008
– reference: LasserreJBMoments, Positive Polynomials and Their Applications2009LondonImperial College Press10.1142/p665
– volume: 54
  start-page: 189
  year: 2005
  ident: 589_CR3
  publication-title: J. Oper. Theory
– volume: 15
  start-page: 805
  issue: 3
  year: 2005
  ident: 589_CR20
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623403431779
– ident: 589_CR6
  doi: 10.1080/10556780802699201
– volume: 8
  start-page: 607
  year: 2008
  ident: 589_CR7
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-007-9004-y
– volume: 42
  start-page: 969
  year: 1993
  ident: 589_CR17
  publication-title: Ind. Univ. Math. J.
  doi: 10.1512/iumj.1993.42.42045
– volume: 106
  start-page: 587
  issue: 3
  year: 2006
  ident: 589_CR12
  publication-title: Math. Program. Ser. A
  doi: 10.1007/s10107-005-0672-6
– ident: 589_CR15
– ident: 589_CR4
– volume: 109
  start-page: 1
  year: 2007
  ident: 589_CR10
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0561-4
– start-page: 83
  volume-title: Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science, vol. 60 of DIMACS Series in Discrete Mathematics and Computer Science
  year: 2003
  ident: 589_CR16
– volume: 11&12
  start-page: 625
  year: 1999
  ident: 589_CR21
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556789908805766
– volume-title: Moments, Positive Polynomials and Their Applications
  year: 2009
  ident: 589_CR9
  doi: 10.1142/p665
– volume: 352
  start-page: 1039
  year: 1999
  ident: 589_CR18
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-99-02522-2
– ident: 589_CR5
  doi: 10.1007/10997703_15
– volume: 23
  start-page: 135
  year: 2007
  ident: 589_CR13
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2006.07.002
– volume: 289
  start-page: 203
  year: 1991
  ident: 589_CR19
  publication-title: Math. Ann.
  doi: 10.1007/BF01446568
– volume-title: A Course in Functional Analysis
  year: 1990
  ident: 589_CR2
– volume: 20
  start-page: 485
  issue: 1
  year: 2009
  ident: 589_CR14
  publication-title: SIAM J. Optim.
  doi: 10.1137/080716670
– volume-title: Real Algebraic Geometry
  year: 1998
  ident: 589_CR1
  doi: 10.1007/978-3-662-03718-8
– volume: 11
  start-page: 796
  issue: 3
  year: 2001
  ident: 589_CR8
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623400366802
– start-page: 157
  volume-title: Emerging Applications of Algebraic Geometry, vol. 149 of IMA Volumes in Mathematics and its Applications
  year: 2009
  ident: 589_CR11
  doi: 10.1007/978-0-387-09686-5_7
SSID ssj0001388
Score 2.4465933
Snippet Consider the optimization problem of minimizing a polynomial function subject to polynomial constraints. A typical approach for solving it globally is applying...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 485
SubjectTerms Analysis
Asymptotic properties
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Full Length Paper
Hierarchies
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical programming
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Optimization
Polynomials
Studies
Theoretical
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BucCBHVE2GYkTyCiOs_lYQQGxnUCCU2Q7toSoUtSmSHDiN_g9voRxmpSCAKnHKM429sw8Z5YHsCfQKysE3jSRvqDo8QxFVMSptCa2sbBe5rkC56vr6Ow2OL8L76o67n6d7V6HJEtLPVbsxso0SZ86KjwqpmEmZIlIGjDTOr2_aI8MMONJUjO1OnhQBzN_u8l3d_SFMX-ERUtvc7IAN_V7DpNMHg8HhTrUrz9aOE74IYswX6FP0houlyWYMvkyzI31JMSjq1Ej1_4KHB-5vOuyFoqUCeplraYhXUsupYvk98zH23ufOEZtpzIv5PlBEtuRBSl6g3z4P3AVbk_aN0dntCJeoJoHoqBSMG5Z4mnBjTahDFHNA8WywJFZWasilfleFlgtjYnCDBGkDRHJ8SgTkjOp-Ro08m5u1oEoHXIRMBspYwJlIhlmuEXjGUI7zYSKmuDV8k911ZXckWN00q9-yk5cKYordeJKRRP2R5c8DVty_Dd4q57UtNLOPm53cJ_no62Lm7A7Oo165YIlMjfdgRsTI9KK0cY14aCex7Fb_PXAjYlGb8Ks7_g1yvyYLWjg1JhtRDmF2qlW9SfnGPKp
  priority: 102
  providerName: Springer Nature
Title Certifying convergence of Lasserre’s hierarchy via flat truncation
URI https://link.springer.com/article/10.1007/s10107-012-0589-9
https://www.proquest.com/docview/1449927037
https://www.proquest.com/docview/1475547040
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS-RAEC5cfXEfxGOXHS9aWBBcGtPpXP0ko8wouoqIA_oU-gRBMuqMgv_eqkwyo4I-hZwNVdVdX7qOD-CvQq9sEHjzQseKo8fzHFGR5Dr4POQqRC6iAufzi-xkkJzepDfNhtuoSats18R6oXZDS3vk-wj8lYrRPvODh0dOrFEUXW0oNH7AgkBPQ3Ze9I-nK7GQRdFSthJOaKOak9I5USddxpyI9bj66JdmYPNTfLR2O_1lWGrwIutOFLwCc75ahZ_vugji2fm09epoDQ6PKFO6rl5idUp5XV3p2TCw_5pi709-d8SIAZtM_JW93GkW7vWYjZ-eq8n-3S8Y9HvXRye8IUrgViZqzLUSMogiskp661Od4rRMjHAJkU-FYDLj4sglwWrvs9Qh4gspIi-ZOaWl0Fb-hvlqWPk_wIxNpUpEyIz3ifGZTh3-UkmHUMwKZbIORK2YStt0EScyi_ty1v-YJFuiZEuSbKk6sDd95WHSQuO7hzdb2ZfNbBqVM913YGd6G-cBBTd05YfP9EyOyCjHNakD_1qdvfvEVwOufz_gBizGRIBRJ7Bswjzqwm8hDBmb7drWtmGhe3x71sPjYe_i8gqvDuLuGzn925c
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bSxtBFD7Y-ND6IPZG461TaCm0DN3d2UvmQUStEmsSiij4ts4VhLBRkyj5U_2NPWcviRXqm4_L7s7AmTPnfDPn8gF8luiVNQJv3lGR5OjxHEdUJLjyLvOZ9IENqMC5P0i75_Gvi-RiCf40tTCUVtnYxNJQ25GhO_IfCPyljFA_s93rG06sURRdbSg0KrU4cbN7PLKNd45_4vp-iaKjw7ODLq9ZBbgRsZxwJUPhw05gpHDGJSpBHY51aGNiavJep9pGgY29Uc6liUV45BOEKSK1UolQGYHjvoDlmCpaW7C8fzj4fTq3_aHodBqSWEImTRy1KtYLyzTPiBOVH5f_esIFvH0UkS0d3dEarNYIle1VKvUallzxBlYe9C3Ep_682ev4LewfUG52WS_FyiT2sp7TsZFnPUXR_lv3dcyIc5ukN2N3V4r5oZqwye20qG4M38H5swjxPbSKUeE-ANMmETIOfaqdi7VLVWLxECcsgj8TSp22IWjElJu6bznRZwzzRcdlkmyOks1Jsrlsw7f5L9dV046nPt5sZJ_X-3ecL7StDZ_mr3HnUThFFW40pW8yxGIZWsE2fG_W7MEQ_5tw_ekJP8LL7lm_l_eOBycb8Coi-o0yfWYTWrgubgtB0ERv15rH4PK5lf0vGTcWbg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60guhBfGK1agRPSnCz2UdzLNXioxUPFrwtySYBoWyLXQVv_g3_nr_EyXa3VlHB47JJFmaSmS87jw_gSKBXVgi8aVP6gqLHMxRREafSmtjGwnracwXOvZvooh9c3Yf3Jc_puMp2r0KSk5oG16Upy09H2p7OFL6xImXSp44Wj4p5WEBrzNxG7_utqSlmvNmsOFsdUKjCmj8t8dUxfaLNbwHSwu90VmGlBIykNdHwGsyZbB2WZ9oI4lNv2nt1vAFnbZcqXZQvkSKnvCivNGRoSVe64PujeX99GxNHgu12-Qt5fpDEDmRO8senbPILbxP6nfO79gUtuRJoygORUykYt6zppYKb1IQyxJMZKKYDxz9lrYqU9j0d2FQaE4UaQZ8NEXzxSAvJmUz5FtSyYWa2gag05CJgNlLGBMpEMtR4q-Ia0VjKhIrq4FWCStKykbjjsxgkny2QnWwTlG3iZJuIOhxPp4wmXTT-GtyopJ-UB2qMNxS8mvlonuI6HE5f41Fw8Q2ZmeGTGxMjOIrRLNXhpNLazBK_fXDnX6MPYPH2rJN0L2-ud2HJd-wYRXZLA2qoJbOHGCVX-8U-_ACMd90A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Certifying+convergence+of+Lasserre%27s+hierarchy+via+flat+truncation&rft.jtitle=Mathematical+programming&rft.au=Nie%2C+Jiawang&rft.date=2013-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=142&rft.issue=1-2&rft.spage=485&rft_id=info:doi/10.1007%2Fs10107-012-0589-9&rft.externalDocID=3123847181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon