Certifying convergence of Lasserre’s hierarchy via flat truncation
Consider the optimization problem of minimizing a polynomial function subject to polynomial constraints. A typical approach for solving it globally is applying Lasserre’s hierarchy of semidefinite relaxations, based on either Putinar’s or Schmüdgen’s Positivstellensatz. A practical question in appli...
Saved in:
Published in | Mathematical programming Vol. 142; no. 1-2; pp. 485 - 510 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2013
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0025-5610 1436-4646 |
DOI | 10.1007/s10107-012-0589-9 |
Cover
Abstract | Consider the optimization problem of minimizing a polynomial function subject to polynomial constraints. A typical approach for solving it globally is applying Lasserre’s hierarchy of semidefinite relaxations, based on either Putinar’s or Schmüdgen’s Positivstellensatz. A practical question in applications is: how to certify its convergence and get minimizers? In this paper, we propose
flat truncation
as a certificate for this purpose. Assume the set of global minimizers is nonempty and finite. Our main results are: (1) Putinar type Lasserre’s hierarchy has finite convergence if and only if flat truncation holds, under some generic assumptions; the same conclusion holds for the Schmüdgen type one under weaker assumptions. (2) Flat truncation is asymptotically satisfied for Putinar type Lasserre’s hierarchy if the archimedean condition holds; the same conclusion holds for the Schmüdgen type one if the feasible set is compact. (3) We show that flat truncation can be used as a certificate to check exactness of standard SOS relaxations and Jacobian SDP relaxations. |
---|---|
AbstractList | Consider the optimization problem of minimizing a polynomial function subject to polynomial constraints. A typical approach for solving it globally is applying Lasserre’s hierarchy of semidefinite relaxations, based on either Putinar’s or Schmüdgen’s Positivstellensatz. A practical question in applications is: how to certify its convergence and get minimizers? In this paper, we propose
flat truncation
as a certificate for this purpose. Assume the set of global minimizers is nonempty and finite. Our main results are: (1) Putinar type Lasserre’s hierarchy has finite convergence if and only if flat truncation holds, under some generic assumptions; the same conclusion holds for the Schmüdgen type one under weaker assumptions. (2) Flat truncation is asymptotically satisfied for Putinar type Lasserre’s hierarchy if the archimedean condition holds; the same conclusion holds for the Schmüdgen type one if the feasible set is compact. (3) We show that flat truncation can be used as a certificate to check exactness of standard SOS relaxations and Jacobian SDP relaxations. Consider the optimization problem of minimizing a polynomial function subject to polynomial constraints. A typical approach for solving it globally is applying Lasserre's hierarchy of semidefinite relaxations, based on either Putinar's or Schmuedgen's Positivstellensatz. A practical question in applications is: how to certify its convergence and get minimizers? In this paper, we propose flat truncation as a certificate for this purpose. Assume the set of global minimizers is nonempty and finite. Our main results are: (1) Putinar type Lasserre's hierarchy has finite convergence if and only if flat truncation holds, under some generic assumptions; the same conclusion holds for the Schmuedgen type one under weaker assumptions. (2) Flat truncation is asymptotically satisfied for Putinar type Lasserre's hierarchy if the archimedean condition holds; the same conclusion holds for the Schmuedgen type one if the feasible set is compact. (3) We show that flat truncation can be used as a certificate to check exactness of standard SOS relaxations and Jacobian SDP relaxations. Consider the optimization problem of minimizing a polynomial function subject to polynomial constraints. A typical approach for solving it globally is applying Lasserre's hierarchy of semidefinite relaxations, based on either Putinar's or Schmüdgen's Positivstellensatz. A practical question in applications is: how to certify its convergence and get minimizers? In this paper, we propose flat truncation as a certificate for this purpose. Assume the set of global minimizers is nonempty and finite. Our main results are: (1) Putinar type Lasserre's hierarchy has finite convergence if and only if flat truncation holds, under some generic assumptions; the same conclusion holds for the Schmüdgen type one under weaker assumptions. (2) Flat truncation is asymptotically satisfied for Putinar type Lasserre's hierarchy if the archimedean condition holds; the same conclusion holds for the Schmüdgen type one if the feasible set is compact. (3) We show that flat truncation can be used as a certificate to check exactness of standard SOS relaxations and Jacobian SDP relaxations.[PUBLICATION ABSTRACT] |
Author | Nie, Jiawang |
Author_xml | – sequence: 1 givenname: Jiawang surname: Nie fullname: Nie, Jiawang email: njw@math.ucsd.edu organization: Department of Mathematics, University of California, San Diego |
BookMark | eNp9kL1OwzAQgC0EEm3hAdgisbAEzrEdxyMqv1IlFpgt1zkXo9QpdorUjdfg9XgSUsKAKsF0y_ed7r4x2Q9tQEJOKJxTAHmRKFCQOdAiB1GpXO2REeWszHnJy30yAihELkoKh2Sc0gsAUFZVI3I1xdh5t_Fhkdk2vGFcYLCYtS6bmZQwRvx8_0jZs8doon3eZG_eZK4xXdbFdbCm8204IgfONAmPf-aEPN1cP07v8tnD7f30cpZbxlWXG0WZoxVYxdCiMAJ4xee05lQWlXPzcl4XUHNnDWIpaim5ExUTrKyVYdRYNiFnw95VbF_XmDq99Mli05iA7TppyqUQXAKHHj3dQV_adQz9dT3FlSokMNlTcqBsbFOK6LT13fdLXTS-0RT0tq4e6uq-rt7W1ao36Y65in5p4uZfpxic1LNhgfHXTX9KXzNLjso |
CODEN | MHPGA4 |
CitedBy_id | crossref_primary_10_1007_s40305_021_00347_8 crossref_primary_10_1016_j_jsc_2018_06_018 crossref_primary_10_1007_s10589_017_9973_y crossref_primary_10_1016_j_laa_2015_08_002 crossref_primary_10_3934_jimo_2021030 crossref_primary_10_1080_10556788_2019_1649672 crossref_primary_10_1007_s10107_021_01739_7 crossref_primary_10_1007_s10589_019_00066_0 crossref_primary_10_1007_s10898_023_01313_9 crossref_primary_10_1007_s11425_017_9437_2 crossref_primary_10_1007_s10107_014_0797_6 crossref_primary_10_1007_s10898_017_0592_z crossref_primary_10_1360_SSM_2020_0137 crossref_primary_10_1007_s10107_022_01878_5 crossref_primary_10_1016_j_automatica_2014_12_007 crossref_primary_10_1137_22M1539137 crossref_primary_10_1137_15M1052172 crossref_primary_10_1137_22M1515689 crossref_primary_10_1137_21M1456285 crossref_primary_10_1007_s10589_025_00657_0 crossref_primary_10_1109_TIT_2016_2619368 crossref_primary_10_1007_s10589_019_00141_6 crossref_primary_10_1007_s10589_019_00145_2 crossref_primary_10_1007_s10107_014_0845_2 crossref_primary_10_1007_s10208_014_9225_9 crossref_primary_10_1137_20M1352375 crossref_primary_10_1287_moor_2022_0334 crossref_primary_10_1137_18M1225677 crossref_primary_10_3934_naco_2024054 crossref_primary_10_1007_s10107_018_1276_2 crossref_primary_10_1007_s10898_013_0047_0 crossref_primary_10_1360_SSM_2024_0129 crossref_primary_10_1016_j_amc_2021_126866 crossref_primary_10_1007_s10107_016_1043_1 crossref_primary_10_1007_s10589_019_00159_w crossref_primary_10_1007_s10589_024_00602_7 crossref_primary_10_1016_j_laa_2020_06_007 crossref_primary_10_1080_03081087_2021_1965078 crossref_primary_10_1007_s10589_013_9612_1 crossref_primary_10_1016_j_jsc_2023_102241 crossref_primary_10_1007_s40305_023_00491_3 crossref_primary_10_1080_10556788_2015_1121489 crossref_primary_10_1016_j_jsc_2024_102403 crossref_primary_10_1137_17M115308X crossref_primary_10_1007_s10957_019_01568_x crossref_primary_10_1016_j_ejco_2021_100012 crossref_primary_10_1109_LRA_2024_3360809 crossref_primary_10_1137_23M1614808 crossref_primary_10_1016_j_orl_2013_11_005 crossref_primary_10_1007_s10208_021_09526_8 crossref_primary_10_1007_s10589_020_00242_7 crossref_primary_10_1007_s10589_020_00248_1 crossref_primary_10_1007_s10898_020_00969_x crossref_primary_10_1137_15M1018514 crossref_primary_10_1080_10556788_2018_1439489 crossref_primary_10_1007_s10589_021_00311_5 crossref_primary_10_1007_s10589_024_00635_y crossref_primary_10_1007_s11425_014_4959_z crossref_primary_10_1007_s11590_021_01708_1 crossref_primary_10_1007_s10898_023_01321_9 crossref_primary_10_1007_s10589_019_00162_1 crossref_primary_10_1007_s10915_023_02138_0 crossref_primary_10_1080_10556788_2018_1528251 crossref_primary_10_1007_s10107_017_1167_y crossref_primary_10_1137_16M1068992 crossref_primary_10_1137_130919490 crossref_primary_10_1137_15100360X crossref_primary_10_1007_s10915_022_02063_8 crossref_primary_10_1109_TAC_2014_2351695 crossref_primary_10_1137_23M1605430 crossref_primary_10_1007_s10589_022_00361_3 crossref_primary_10_1137_140962292 crossref_primary_10_1007_s10898_020_00954_4 crossref_primary_10_1287_moor_2023_0200 |
Cites_doi | 10.1137/S1052623403431779 10.1080/10556780802699201 10.1007/s10208-007-9004-y 10.1512/iumj.1993.42.42045 10.1007/s10107-005-0672-6 10.1007/s10107-004-0561-4 10.1080/10556789908805766 10.1142/p665 10.1090/S0002-9947-99-02522-2 10.1007/10997703_15 10.1016/j.jco.2006.07.002 10.1007/BF01446568 10.1137/080716670 10.1007/978-3-662-03718-8 10.1137/S1052623400366802 10.1007/978-0-387-09686-5_7 |
ContentType | Journal Article |
Copyright | Springer and Mathematical Optimization Society 2012 Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2013 |
Copyright_xml | – notice: Springer and Mathematical Optimization Society 2012 – notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2013 |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
DOI | 10.1007/s10107-012-0589-9 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest_ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database (ProQuest) Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Computer and Information Systems Abstracts ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1436-4646 |
EndPage | 510 |
ExternalDocumentID | 3123847181 10_1007_s10107_012_0589_9 |
Genre | Feature |
GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI Q9U PUEGO |
ID | FETCH-LOGICAL-c349t-a913f180c93ece5a50484b1d41728ffb6bd20d4fcaee65d774f583536d9a31ac3 |
IEDL.DBID | 8FG |
ISSN | 0025-5610 |
IngestDate | Fri Sep 05 14:48:59 EDT 2025 Fri Jul 25 19:51:11 EDT 2025 Tue Jul 01 03:42:29 EDT 2025 Thu Apr 24 23:01:44 EDT 2025 Fri Feb 21 02:32:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Semidefinite program 65K05 Sum of squares 90C22 Preordering Quadratic module Flat truncation Lasserre’s hierarchy |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-a913f180c93ece5a50484b1d41728ffb6bd20d4fcaee65d774f583536d9a31ac3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 1449927037 |
PQPubID | 25307 |
PageCount | 26 |
ParticipantIDs | proquest_miscellaneous_1475547040 proquest_journals_1449927037 crossref_citationtrail_10_1007_s10107_012_0589_9 crossref_primary_10_1007_s10107_012_0589_9 springer_journals_10_1007_s10107_012_0589_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20131200 2013-12-00 20131201 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 20131200 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | A Publication of the Mathematical Optimization Society |
PublicationTitle | Mathematical programming |
PublicationTitleAbbrev | Math. Program |
PublicationYear | 2013 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | LaurentMPutinarMSullivantSSums of squares, moment matrices and optimization over polynomialsEmerging Applications of Algebraic Geometry, vol. 149 of IMA Volumes in Mathematics and its Applications2009BerlinSpringer15727010.1007/978-0-387-09686-5_7 Henrion, D., Lasserre, J.: Detecting global optimality and extracting solutions in GloptiPoly. In: Positive Polynomials in Control. Lecture Notes in Control and Information Science vol. 312, pp. 293–310. Springer, Berlin (2005) BochnakJCosteMRoyM-FReal Algebraic Geometry1998BerlinSpringer0912.14023 LaurentMSemidefinite representations for finite varietiesMath. Program.2007109126229159010.1007/s10107-004-0561-41152.90007 SchmüdgenKThe K-moment problem for compact semialgebraic setsMath. Ann.1991289203206109217310.1007/BF014465680744.44008 LasserreJBMoments, Positive Polynomials and Their Applications2009LondonImperial College Press10.1142/p665 PutinarMPositive polynomials on compact semi-algebraic setsInd. Univ. Math. J.199342969984125412810.1512/iumj.1993.42.420450796.12002 ConwayJBA Course in Functional Analysis1990BerlinSpringer0706.46003 SturmJFSeDuMi 1.02: A MATLAB toolbox for optimization over symmetric conesOptim. Methods Softw.199911&12625653177843310.1080/10556789908805766 LasserreJBLaurentMRostalskiPSemidefinite characterization and computation of zero-dimensional real radical idealsFound. Comput. Math.20088607647244309110.1007/s10208-007-9004-y1176.14010 SchweighoferMOptimization of polynomials on compact semialgebraic setsSIAM J. Optim.2005153805825214286110.1137/S10526234034317791114.90098 LasserreJBGlobal optimization with polynomials and the problem of momentsSIAM J. Optim.2001113796817181404510.1137/S10526234003668021010.90061 NieJSchweighoferMOn the complexity of Putinar’s PositivstellensatzJ. Complex.200723135150229701910.1016/j.jco.2006.07.0021143.13028 ScheidererCSums of squares of regular functions on real algebraic varietiesTrans. Am. Math. Soc.199935210391069167523010.1090/S0002-9947-99-02522-2 Nie, J.: An exact Jacobian SDP relaxation for polynomial optimization. Math. Program. Ser. A (to appear) HenrionD.LasserreJ.LoefbergJ.GloptiPoly 3: moments, optimization and semidefinite programmingOptim. Methods Softw.2009244–5761779 NieJRanestadKAlgebraic degree of polynomial optimizationSIAM J. Optim.2009201485502250713310.1137/0807166701190.14051 NieJDemmelJSturmfelsBMinimizing polynomials via sum of squares over the gradient idealMath. Program. Ser. A20061063587606221679710.1007/s10107-005-0672-61134.90032 CurtoRFialkowLTruncated K-moment problems in several variablesJ. Oper. Theory20055418922621688671119.47304 Helton, J.W., Nie, J.: A semidefinite approach for truncated K-moment problem, (2011). [Preprint] ParriloPASturmfelsBBasuSGonzalez-VegaLMinimizing polynomial functionsAlgorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science, vol. 60 of DIMACS Series in Discrete Mathematics and Computer Science2003ProvidenceAMS8399 JF Sturm (589_CR21) 1999; 11&12 M Putinar (589_CR17) 1993; 42 589_CR15 C Scheiderer (589_CR18) 1999; 352 JB Lasserre (589_CR7) 2008; 8 K Schmüdgen (589_CR19) 1991; 289 J Bochnak (589_CR1) 1998 J Nie (589_CR13) 2007; 23 J Nie (589_CR14) 2009; 20 589_CR5 589_CR4 M Schweighofer (589_CR20) 2005; 15 589_CR6 JB Lasserre (589_CR8) 2001; 11 R Curto (589_CR3) 2005; 54 JB Lasserre (589_CR9) 2009 M Laurent (589_CR10) 2007; 109 M Laurent (589_CR11) 2009 PA Parrilo (589_CR16) 2003 JB Conway (589_CR2) 1990 J Nie (589_CR12) 2006; 106 |
References_xml | – reference: NieJSchweighoferMOn the complexity of Putinar’s PositivstellensatzJ. Complex.200723135150229701910.1016/j.jco.2006.07.0021143.13028 – reference: BochnakJCosteMRoyM-FReal Algebraic Geometry1998BerlinSpringer0912.14023 – reference: ConwayJBA Course in Functional Analysis1990BerlinSpringer0706.46003 – reference: CurtoRFialkowLTruncated K-moment problems in several variablesJ. Oper. Theory20055418922621688671119.47304 – reference: ParriloPASturmfelsBBasuSGonzalez-VegaLMinimizing polynomial functionsAlgorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science, vol. 60 of DIMACS Series in Discrete Mathematics and Computer Science2003ProvidenceAMS8399 – reference: ScheidererCSums of squares of regular functions on real algebraic varietiesTrans. Am. Math. Soc.199935210391069167523010.1090/S0002-9947-99-02522-2 – reference: NieJRanestadKAlgebraic degree of polynomial optimizationSIAM J. Optim.2009201485502250713310.1137/0807166701190.14051 – reference: PutinarMPositive polynomials on compact semi-algebraic setsInd. Univ. Math. J.199342969984125412810.1512/iumj.1993.42.420450796.12002 – reference: Henrion, D., Lasserre, J.: Detecting global optimality and extracting solutions in GloptiPoly. In: Positive Polynomials in Control. Lecture Notes in Control and Information Science vol. 312, pp. 293–310. Springer, Berlin (2005) – reference: LaurentMPutinarMSullivantSSums of squares, moment matrices and optimization over polynomialsEmerging Applications of Algebraic Geometry, vol. 149 of IMA Volumes in Mathematics and its Applications2009BerlinSpringer15727010.1007/978-0-387-09686-5_7 – reference: SturmJFSeDuMi 1.02: A MATLAB toolbox for optimization over symmetric conesOptim. Methods Softw.199911&12625653177843310.1080/10556789908805766 – reference: NieJDemmelJSturmfelsBMinimizing polynomials via sum of squares over the gradient idealMath. Program. Ser. A20061063587606221679710.1007/s10107-005-0672-61134.90032 – reference: LasserreJBLaurentMRostalskiPSemidefinite characterization and computation of zero-dimensional real radical idealsFound. Comput. Math.20088607647244309110.1007/s10208-007-9004-y1176.14010 – reference: Helton, J.W., Nie, J.: A semidefinite approach for truncated K-moment problem, (2011). [Preprint] – reference: SchweighoferMOptimization of polynomials on compact semialgebraic setsSIAM J. Optim.2005153805825214286110.1137/S10526234034317791114.90098 – reference: HenrionD.LasserreJ.LoefbergJ.GloptiPoly 3: moments, optimization and semidefinite programmingOptim. Methods Softw.2009244–5761779 – reference: Nie, J.: An exact Jacobian SDP relaxation for polynomial optimization. Math. Program. Ser. A (to appear) – reference: LaurentMSemidefinite representations for finite varietiesMath. Program.2007109126229159010.1007/s10107-004-0561-41152.90007 – reference: LasserreJBGlobal optimization with polynomials and the problem of momentsSIAM J. Optim.2001113796817181404510.1137/S10526234003668021010.90061 – reference: SchmüdgenKThe K-moment problem for compact semialgebraic setsMath. Ann.1991289203206109217310.1007/BF014465680744.44008 – reference: LasserreJBMoments, Positive Polynomials and Their Applications2009LondonImperial College Press10.1142/p665 – volume: 54 start-page: 189 year: 2005 ident: 589_CR3 publication-title: J. Oper. Theory – volume: 15 start-page: 805 issue: 3 year: 2005 ident: 589_CR20 publication-title: SIAM J. Optim. doi: 10.1137/S1052623403431779 – ident: 589_CR6 doi: 10.1080/10556780802699201 – volume: 8 start-page: 607 year: 2008 ident: 589_CR7 publication-title: Found. Comput. Math. doi: 10.1007/s10208-007-9004-y – volume: 42 start-page: 969 year: 1993 ident: 589_CR17 publication-title: Ind. Univ. Math. J. doi: 10.1512/iumj.1993.42.42045 – volume: 106 start-page: 587 issue: 3 year: 2006 ident: 589_CR12 publication-title: Math. Program. Ser. A doi: 10.1007/s10107-005-0672-6 – ident: 589_CR15 – ident: 589_CR4 – volume: 109 start-page: 1 year: 2007 ident: 589_CR10 publication-title: Math. Program. doi: 10.1007/s10107-004-0561-4 – start-page: 83 volume-title: Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science, vol. 60 of DIMACS Series in Discrete Mathematics and Computer Science year: 2003 ident: 589_CR16 – volume: 11&12 start-page: 625 year: 1999 ident: 589_CR21 publication-title: Optim. Methods Softw. doi: 10.1080/10556789908805766 – volume-title: Moments, Positive Polynomials and Their Applications year: 2009 ident: 589_CR9 doi: 10.1142/p665 – volume: 352 start-page: 1039 year: 1999 ident: 589_CR18 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-99-02522-2 – ident: 589_CR5 doi: 10.1007/10997703_15 – volume: 23 start-page: 135 year: 2007 ident: 589_CR13 publication-title: J. Complex. doi: 10.1016/j.jco.2006.07.002 – volume: 289 start-page: 203 year: 1991 ident: 589_CR19 publication-title: Math. Ann. doi: 10.1007/BF01446568 – volume-title: A Course in Functional Analysis year: 1990 ident: 589_CR2 – volume: 20 start-page: 485 issue: 1 year: 2009 ident: 589_CR14 publication-title: SIAM J. Optim. doi: 10.1137/080716670 – volume-title: Real Algebraic Geometry year: 1998 ident: 589_CR1 doi: 10.1007/978-3-662-03718-8 – volume: 11 start-page: 796 issue: 3 year: 2001 ident: 589_CR8 publication-title: SIAM J. Optim. doi: 10.1137/S1052623400366802 – start-page: 157 volume-title: Emerging Applications of Algebraic Geometry, vol. 149 of IMA Volumes in Mathematics and its Applications year: 2009 ident: 589_CR11 doi: 10.1007/978-0-387-09686-5_7 |
SSID | ssj0001388 |
Score | 2.4465933 |
Snippet | Consider the optimization problem of minimizing a polynomial function subject to polynomial constraints. A typical approach for solving it globally is applying... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 485 |
SubjectTerms | Analysis Asymptotic properties Calculus of Variations and Optimal Control; Optimization Combinatorics Full Length Paper Hierarchies Mathematical and Computational Physics Mathematical Methods in Physics Mathematical programming Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Optimization Polynomials Studies Theoretical |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BucCBHVE2GYkTyCiOs_lYQQGxnUCCU2Q7toSoUtSmSHDiN_g9voRxmpSCAKnHKM429sw8Z5YHsCfQKysE3jSRvqDo8QxFVMSptCa2sbBe5rkC56vr6Ow2OL8L76o67n6d7V6HJEtLPVbsxso0SZ86KjwqpmEmZIlIGjDTOr2_aI8MMONJUjO1OnhQBzN_u8l3d_SFMX-ERUtvc7IAN_V7DpNMHg8HhTrUrz9aOE74IYswX6FP0houlyWYMvkyzI31JMSjq1Ej1_4KHB-5vOuyFoqUCeplraYhXUsupYvk98zH23ufOEZtpzIv5PlBEtuRBSl6g3z4P3AVbk_aN0dntCJeoJoHoqBSMG5Z4mnBjTahDFHNA8WywJFZWasilfleFlgtjYnCDBGkDRHJ8SgTkjOp-Ro08m5u1oEoHXIRMBspYwJlIhlmuEXjGUI7zYSKmuDV8k911ZXckWN00q9-yk5cKYordeJKRRP2R5c8DVty_Dd4q57UtNLOPm53cJ_no62Lm7A7Oo165YIlMjfdgRsTI9KK0cY14aCex7Fb_PXAjYlGb8Ks7_g1yvyYLWjg1JhtRDmF2qlW9SfnGPKp priority: 102 providerName: Springer Nature |
Title | Certifying convergence of Lasserre’s hierarchy via flat truncation |
URI | https://link.springer.com/article/10.1007/s10107-012-0589-9 https://www.proquest.com/docview/1449927037 https://www.proquest.com/docview/1475547040 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS-RAEC5cfXEfxGOXHS9aWBBcGtPpXP0ko8wouoqIA_oU-gRBMuqMgv_eqkwyo4I-hZwNVdVdX7qOD-CvQq9sEHjzQseKo8fzHFGR5Dr4POQqRC6iAufzi-xkkJzepDfNhtuoSats18R6oXZDS3vk-wj8lYrRPvODh0dOrFEUXW0oNH7AgkBPQ3Ze9I-nK7GQRdFSthJOaKOak9I5USddxpyI9bj66JdmYPNTfLR2O_1lWGrwIutOFLwCc75ahZ_vugji2fm09epoDQ6PKFO6rl5idUp5XV3p2TCw_5pi709-d8SIAZtM_JW93GkW7vWYjZ-eq8n-3S8Y9HvXRye8IUrgViZqzLUSMogiskp661Od4rRMjHAJkU-FYDLj4sglwWrvs9Qh4gspIi-ZOaWl0Fb-hvlqWPk_wIxNpUpEyIz3ifGZTh3-UkmHUMwKZbIORK2YStt0EScyi_ty1v-YJFuiZEuSbKk6sDd95WHSQuO7hzdb2ZfNbBqVM913YGd6G-cBBTd05YfP9EyOyCjHNakD_1qdvfvEVwOufz_gBizGRIBRJ7Bswjzqwm8hDBmb7drWtmGhe3x71sPjYe_i8gqvDuLuGzn925c |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bSxtBFD7Y-ND6IPZG461TaCm0DN3d2UvmQUStEmsSiij4ts4VhLBRkyj5U_2NPWcviRXqm4_L7s7AmTPnfDPn8gF8luiVNQJv3lGR5OjxHEdUJLjyLvOZ9IENqMC5P0i75_Gvi-RiCf40tTCUVtnYxNJQ25GhO_IfCPyljFA_s93rG06sURRdbSg0KrU4cbN7PLKNd45_4vp-iaKjw7ODLq9ZBbgRsZxwJUPhw05gpHDGJSpBHY51aGNiavJep9pGgY29Uc6liUV45BOEKSK1UolQGYHjvoDlmCpaW7C8fzj4fTq3_aHodBqSWEImTRy1KtYLyzTPiBOVH5f_esIFvH0UkS0d3dEarNYIle1VKvUallzxBlYe9C3Ep_682ev4LewfUG52WS_FyiT2sp7TsZFnPUXR_lv3dcyIc5ukN2N3V4r5oZqwye20qG4M38H5swjxPbSKUeE-ANMmETIOfaqdi7VLVWLxECcsgj8TSp22IWjElJu6bznRZwzzRcdlkmyOks1Jsrlsw7f5L9dV046nPt5sZJ_X-3ecL7StDZ_mr3HnUThFFW40pW8yxGIZWsE2fG_W7MEQ_5tw_ekJP8LL7lm_l_eOBycb8Coi-o0yfWYTWrgubgtB0ERv15rH4PK5lf0vGTcWbg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60guhBfGK1agRPSnCz2UdzLNXioxUPFrwtySYBoWyLXQVv_g3_nr_EyXa3VlHB47JJFmaSmS87jw_gSKBXVgi8aVP6gqLHMxRREafSmtjGwnracwXOvZvooh9c3Yf3Jc_puMp2r0KSk5oG16Upy09H2p7OFL6xImXSp44Wj4p5WEBrzNxG7_utqSlmvNmsOFsdUKjCmj8t8dUxfaLNbwHSwu90VmGlBIykNdHwGsyZbB2WZ9oI4lNv2nt1vAFnbZcqXZQvkSKnvCivNGRoSVe64PujeX99GxNHgu12-Qt5fpDEDmRO8senbPILbxP6nfO79gUtuRJoygORUykYt6zppYKb1IQyxJMZKKYDxz9lrYqU9j0d2FQaE4UaQZ8NEXzxSAvJmUz5FtSyYWa2gag05CJgNlLGBMpEMtR4q-Ia0VjKhIrq4FWCStKykbjjsxgkny2QnWwTlG3iZJuIOhxPp4wmXTT-GtyopJ-UB2qMNxS8mvlonuI6HE5f41Fw8Q2ZmeGTGxMjOIrRLNXhpNLazBK_fXDnX6MPYPH2rJN0L2-ud2HJd-wYRXZLA2qoJbOHGCVX-8U-_ACMd90A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Certifying+convergence+of+Lasserre%27s+hierarchy+via+flat+truncation&rft.jtitle=Mathematical+programming&rft.au=Nie%2C+Jiawang&rft.date=2013-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=142&rft.issue=1-2&rft.spage=485&rft_id=info:doi/10.1007%2Fs10107-012-0589-9&rft.externalDocID=3123847181 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |