Cross-Modality LGE-CMR Segmentation Using Image-to-Image Translation Based Data Augmentation

Accurate segmentation of ventricle and myocardium from the late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) is an important tool for myocardial infarction (MI) analysis. However, the complex enhancement pattern of LGE-CMR and the lack of labeled samples make its automatic segmentat...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM transactions on computational biology and bioinformatics Vol. 20; no. 4; pp. 2367 - 2375
Main Authors Wang, Wei, Yu, Xinhua, Fang, Bo, Zhao, Yue, Chen, Yongyong, Wei, Wei, Chen, Junxin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Accurate segmentation of ventricle and myocardium from the late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) is an important tool for myocardial infarction (MI) analysis. However, the complex enhancement pattern of LGE-CMR and the lack of labeled samples make its automatic segmentation difficult to be implemented. In this paper, we propose an unsupervised LGE-CMR segmentation algorithm by using multiple style transfer networks for data augmentation. It adopts two different style transfer networks to perform style transfer of the easily available annotated balanced-Steady State Free Precession (bSSFP)-CMR images. Then, multiple sets of synthetic LGE-CMR images are generated by the style transfer networks and used as the training data for the improved U-Net. The entire implementation of the algorithm does not require the labeled LGE-CMR. Validation experiments demonstrate the effectiveness and advantages of the proposed algorithm.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1545-5963
1557-9964
1557-9964
DOI:10.1109/TCBB.2022.3140306