MIN2Net: End-to-End Multi-Task Learning for Subject-Independent Motor Imagery EEG Classification

Objective: Advances in the motor imagery (MI)-based brain-computer interfaces (BCIs) allow control of several applications by decoding neurophysiological phenomena, which are usually recorded by electroencephalography (EEG) using a non-invasive technique. Despite significant advances in MI-based BCI...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 69; no. 6; pp. 2105 - 2118
Main Authors Autthasan, Phairot, Chaisaen, Rattanaphon, Sudhawiyangkul, Thapanun, Rangpong, Phurin, Kiatthaveephong, Suktipol, Dilokthanakul, Nat, Bhakdisongkhram, Gun, Phan, Huy, Guan, Cuntai, Wilaiprasitporn, Theerawit
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Objective: Advances in the motor imagery (MI)-based brain-computer interfaces (BCIs) allow control of several applications by decoding neurophysiological phenomena, which are usually recorded by electroencephalography (EEG) using a non-invasive technique. Despite significant advances in MI-based BCI, EEG rhythms are specific to a subject and various changes over time. These issues point to significant challenges to enhance the classification performance, especially in a subject-independent manner. Methods: To overcome these challenges, we propose MIN2Net, a novel end-to-end multi-task learning to tackle this task. We integrate deep metric learning into a multi-task autoencoder to learn a compact and discriminative latent representation from EEG and perform classification simultaneously. Results: This approach reduces the complexity in pre-processing, results in significant performance improvement on EEG classification. Experimental results in a subject-independent manner show that MIN2Net outperforms the state-of-the-art techniques, achieving an F1-score improvement of 6.72% and 2.23% on the SMR-BCI and OpenBMI datasets, respectively. Conclusion: We demonstrate that MIN2Net improves discriminative information in the latent representation. Significance: This study indicates the possibility and practicality of using this model to develop MI-based BCI applications for new users without calibration.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0018-9294
1558-2531
1558-2531
DOI:10.1109/TBME.2021.3137184