Robust Filtering for a Class of Networked Nonlinear Systems With Switching Communication Channels

This paper is concerned with the problem of robust filter design for a class of discrete-time networked nonlinear systems. The Takagi-Sugeno fuzzy model is employed to represent the underlying nonlinear dynamics. A multi-channel communication scheme that involves a channel switching phenomenon descr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 47; no. 3; pp. 671 - 682
Main Authors Zhang, Lixian, Yin, Xunyuan, Ning, Zepeng, Ye, Dong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper is concerned with the problem of robust filter design for a class of discrete-time networked nonlinear systems. The Takagi-Sugeno fuzzy model is employed to represent the underlying nonlinear dynamics. A multi-channel communication scheme that involves a channel switching phenomenon described by a Markov chain is proposed for data transmission. Two typical communication imperfections, network-induced time-varying delays and packet dropouts are considered in each channel. The objective of this paper is to design an admissible filter such that the filter error system is stochastically stable and ensures a prescribed disturbance attenuation level bound. Based on the Lyapunov-Krasovskii functional method and matrix inequality techniques, sufficient conditions on the existence of the desired filter are obtained. A numerical example is provided to illustrate the effectiveness of the proposed design approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2016.2523811