Robust Filtering for a Class of Networked Nonlinear Systems With Switching Communication Channels
This paper is concerned with the problem of robust filter design for a class of discrete-time networked nonlinear systems. The Takagi-Sugeno fuzzy model is employed to represent the underlying nonlinear dynamics. A multi-channel communication scheme that involves a channel switching phenomenon descr...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 47; no. 3; pp. 671 - 682 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.03.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper is concerned with the problem of robust filter design for a class of discrete-time networked nonlinear systems. The Takagi-Sugeno fuzzy model is employed to represent the underlying nonlinear dynamics. A multi-channel communication scheme that involves a channel switching phenomenon described by a Markov chain is proposed for data transmission. Two typical communication imperfections, network-induced time-varying delays and packet dropouts are considered in each channel. The objective of this paper is to design an admissible filter such that the filter error system is stochastically stable and ensures a prescribed disturbance attenuation level bound. Based on the Lyapunov-Krasovskii functional method and matrix inequality techniques, sufficient conditions on the existence of the desired filter are obtained. A numerical example is provided to illustrate the effectiveness of the proposed design approach. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2168-2267 2168-2275 2168-2275 |
DOI: | 10.1109/TCYB.2016.2523811 |