Transfer Learning for Brain-Computer Interfaces: A Euclidean Space Data Alignment Approach

Objective: This paper targets a major challenge in developing practical electroencephalogram (EEG)-based brain-computer interfaces (BCIs): how to cope with individual differences so that better learning performance can be obtained for a new subject, with minimum or even no subject-specific data? Met...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 67; no. 2; pp. 399 - 410
Main Authors He, He, Wu, Dongrui
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Objective: This paper targets a major challenge in developing practical electroencephalogram (EEG)-based brain-computer interfaces (BCIs): how to cope with individual differences so that better learning performance can be obtained for a new subject, with minimum or even no subject-specific data? Methods: We propose a novel approach to align EEG trials from different subjects in the Euclidean space to make them more similar, and hence improve the learning performance for a new subject. Our approach has three desirable properties: first, it aligns the EEG trials directly in the Euclidean space, and any signal processing, feature extraction, and machine learning algorithms can then be applied to the aligned trials; second, its computational cost is very low; and third, it is unsupervised and does not need any label information from the new subject. Results: Both offline and simulated online experiments on motor imagery classification and event-related potential classification verified that our proposed approach outperformed a state-of-the-art Riemannian space data alignment approach, and several approaches without data alignment. Conclusion: The proposed Euclidean space EEG data alignment approach can greatly facilitate transfer learning in BCIs. Significance: Our proposed approach is effective, efficient, and easy to implement. It could be an essential pre-processing step for EEG-based BCIs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0018-9294
1558-2531
1558-2531
DOI:10.1109/TBME.2019.2913914