A Numerical Method for Simulation of Microflows by Solving Directly Kinetic Equations with WENO Schemes

A numerical method for simulation of transitional-regime gas flows in microdevices is presented. The method is based on solving relaxation-type kinetic equations using high-order shock capturing weighted essentially non-oscillatory (WENO) schemes in the coordinate space and the discrete ordinate tec...

Full description

Saved in:
Bibliographic Details
Published inJournal of scientific computing Vol. 57; no. 1; pp. 42 - 73
Main Authors Kudryavtsev, A. N., Shershnev, A. A.
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.10.2013
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A numerical method for simulation of transitional-regime gas flows in microdevices is presented. The method is based on solving relaxation-type kinetic equations using high-order shock capturing weighted essentially non-oscillatory (WENO) schemes in the coordinate space and the discrete ordinate techniques in the velocity space. In contrast to the direct simulation Monte Carlo (DSMC) method, this approach is not subject to statistical scattering and is equally efficient when simulating both steady and unsteady flows. The presented numerical method is used to simulate some classical problems of rarefied gas dynamics as well as some microflows of practical interest, namely shock wave propagation in a microchannel and steady and unsteady flows in a supersonic micronozzle. Computational results are compared with Navier–Stokes and DSMC solutions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-013-9694-z