Predefined-Time Bounded Consensus of Multiagent Systems With Unknown Nonlinearity via Distributed Adaptive Fuzzy Control

This article investigates uniformly predefined-time bounded consensus of leader-following multiagent systems (MASs) with unknown system nonlinearity and external disturbance via distributed adaptive fuzzy control. First, uniformly predefined-time-bounded stability is analyzed and a sufficient condit...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 53; no. 4; pp. 2622 - 2635
Main Authors Mao, Bing, Wu, Xiaoqun, Lu, Jinhu, Chen, Guanrong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article investigates uniformly predefined-time bounded consensus of leader-following multiagent systems (MASs) with unknown system nonlinearity and external disturbance via distributed adaptive fuzzy control. First, uniformly predefined-time-bounded stability is analyzed and a sufficient condition is derived for the system to achieve semiglobally (globally) uniformly predefined-time-bounded consensus. Therein, the settling time is independent of initial conditions and can be defined in advance. Then, for first-order MASs, distributed adaptive fuzzy controllers are designed by combining neighboring consensus errors to drive all following agents to globally track the leader's state within predefined time. For second-order MASs, by formulating filtered errors, the consensus errors between following agents and the leader are shown to be bounded if the filtered errors are bounded. Furthermore, with the distributed controllers designed based on filtered errors, second-order MASs achieve semiglobally uniformly predefined-time-bounded leader-following consensus. Finally, two numerical examples are simulated, including: 1) a first-order leader-following MAS and 2) a second-order Lagrangian system consisting of single-link manipulators, to demonstrate the performance of the proposed controllers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2022.3163755