Delay-Dependent Stability Analysis of Load Frequency Control Systems With Electric Vehicles
This article investigates the problem of delay-dependent stability for the one-area load frequency control (LFC) system with electric vehicles (EVs). Two closed-loop models of the LFC system with EVs are proposed, including the model based on the model reconstructed technique and the model with unce...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 52; no. 12; pp. 13645 - 13653 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This article investigates the problem of delay-dependent stability for the one-area load frequency control (LFC) system with electric vehicles (EVs). Two closed-loop models of the LFC system with EVs are proposed, including the model based on the model reconstructed technique and the model with uncertain parameters that considers state of charge. By employing the Lyapunov-Krasovskii functional method, two delay-dependent stability criteria are presented for the systems under study such that a more accurate admissible delay upper bound (ADUB) can be obtained. Case studies are finally carried out to disclose the interrelationship between the ADUB, PI controller gains, and other parameters of the EVs. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2168-2267 2168-2275 2168-2275 |
DOI: | 10.1109/TCYB.2022.3140463 |